Suppr超能文献

针对人乳头瘤病毒阳性韩国人的宫颈癌进展预测工具的开发:一种基于支持向量机的方法。

Development of a cervical cancer progress prediction tool for human papillomavirus-positive Koreans: A support vector machine-based approach.

作者信息

Kahng Jimin, Kim Eung-Hee, Kim Hong-Gee, Lee Wonbae

机构信息

Department of Laboratory Medicine, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea.

Biomedical Knowledge Engineering Laboratory, Seoul National University, Seoul, Republic of Korea.

出版信息

J Int Med Res. 2015 Aug;43(4):518-25. doi: 10.1177/0300060515577846. Epub 2015 May 22.

Abstract

OBJECTIVES

To develop a Web-based tool to draw attention to patients positive for human papillomavirus (HPV) who have a high risk of progression to cervical cancer, in order to increase compliance with follow-up examinations and facilitate good doctor-patient communication.

METHODS

Records were retrospectively analysed from women who were positive for HPV on initial testing (before any treatment). Information concerning age, Papanicolaou (PAP) smear result and presence of 15 high-risk HPV genotypes was used in a support vector machine (SVM) model, to identify the patient features that maximally contributed to progression to high-risk cervical lesions.

RESULTS

Data from 731 subjects were analysed. The maximum number of correct cancer predictions was seen when four features (PAP, HPV16, HPV52 and HPV35) were used, giving an accuracy of 74.41%. A web-based high-risk cervical lesion prediction application tool was developed using the SVM model results.

CONCLUSIONS

Use of the web-based prediction tool may help to increase patient compliance with physician advice, and may heighten awareness of the significance of regular follow-up HPV examinations for the prevention of cervical cancer, in Korean women predicted to have heightened risk of the disease.

摘要

目的

开发一种基于网络的工具,以引起人乳头瘤病毒(HPV)检测呈阳性且有进展为宫颈癌高风险的患者的注意,从而提高其对后续检查的依从性,并促进良好的医患沟通。

方法

对初次检测(任何治疗前)HPV呈阳性的女性的记录进行回顾性分析。将年龄、巴氏涂片结果以及15种高危HPV基因型的存在情况等信息用于支持向量机(SVM)模型,以识别对进展为高危宫颈病变贡献最大的患者特征。

结果

分析了731名受试者的数据。使用四个特征(巴氏涂片、HPV16、HPV52和HPV35)时,正确预测癌症的数量最多,准确率为74.41%。利用SVM模型结果开发了一种基于网络的高危宫颈病变预测应用工具。

结论

对于预计患宫颈癌风险较高的韩国女性,使用基于网络的预测工具可能有助于提高患者对医生建议的依从性,并可能提高对定期进行HPV后续检查以预防宫颈癌重要性的认识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验