Vazquez Blanca, Rojas-García Mariano, Rodríguez-Esquivel Jocelyn Isabel, Marquez-Acosta Janeth, Aranda-Flores Carlos E, Cetina-Pérez Lucely Del Carmen, Soto-López Susana, Estévez-García Jesús A, Bahena-Román Margarita, Madrid-Marina Vicente, Torres-Poveda Kirvis
Unidad Académica del Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas del Estado de Yucatán, Universidad Nacional Autónoma de México (UNAM), Mérida 97357, Mexico.
Department of Animal Sciences, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico.
Diagnostics (Basel). 2025 Jun 17;15(12):1543. doi: 10.3390/diagnostics15121543.
Cervical cancer (CC) is the fourth most common cancer among women worldwide. This study explored the use of machine learning (ML) and deep learning (DL) in the prediction, diagnosis, and prognosis of CC. An electronic search was conducted in the PubMed, IEEE, Web of Science, and Scopus databases from January 2015 to April 2025 using the search terms ML, DL, and uterine cervical neoplasms. A total of 153 studies were selected in this review. A comprehensive summary of the available evidence was compiled. We found that 54.9% of the studies addressed the application of ML and DL in CC for diagnostic purposes, followed by prognosis (22.9%) and an incipient focus on CC treatment (22.2%). The five countries where most ML and DL applications have been generated are China, the United States, India, Republic of Korea, and Japan. Of these studies, 48.4% proposed a DL-based approach, and the most frequent input data used to train the models on CC were images. Although there are results indicating a promising application of these artificial intelligence approaches in oncology clinical practice, further evidence of their validity and reproducibility is required for their use in early detection, prognosis, and therapeutic management of CC.
宫颈癌(CC)是全球女性中第四大常见癌症。本研究探讨了机器学习(ML)和深度学习(DL)在宫颈癌的预测、诊断和预后中的应用。2015年1月至2025年4月期间,在PubMed、IEEE、科学网和Scopus数据库中使用搜索词ML、DL和子宫颈肿瘤进行了电子检索。本综述共纳入153项研究。对现有证据进行了全面总结。我们发现,54.9%的研究涉及ML和DL在宫颈癌诊断中的应用,其次是预后(22.9%),以及对宫颈癌治疗的初步关注(22.2%)。产生最多ML和DL应用的五个国家是中国、美国、印度、韩国和日本。在这些研究中,48.4%提出了基于DL的方法,用于训练宫颈癌模型的最常见输入数据是图像。尽管有结果表明这些人工智能方法在肿瘤临床实践中有很有前景的应用,但在宫颈癌的早期检测、预后和治疗管理中使用它们还需要进一步的有效性和可重复性证据。
Diagnostics (Basel). 2025-6-17
Health Technol Assess. 2006-9
Cochrane Database Syst Rev. 2022-5-20
JBI Database System Rev Implement Rep. 2016-4
Cochrane Database Syst Rev. 2016-5-1
Cochrane Database Syst Rev. 2021-9-6
Health Technol Assess. 2001
Cancer Biol Med. 2024-9-19
Br J Hosp Med (Lond). 2024-7-30