文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于宫颈癌诊断、预后和治疗的机器学习与深度学习:一项范围综述

Machine and Deep Learning for the Diagnosis, Prognosis, and Treatment of Cervical Cancer: A Scoping Review.

作者信息

Vazquez Blanca, Rojas-García Mariano, Rodríguez-Esquivel Jocelyn Isabel, Marquez-Acosta Janeth, Aranda-Flores Carlos E, Cetina-Pérez Lucely Del Carmen, Soto-López Susana, Estévez-García Jesús A, Bahena-Román Margarita, Madrid-Marina Vicente, Torres-Poveda Kirvis

机构信息

Unidad Académica del Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas del Estado de Yucatán, Universidad Nacional Autónoma de México (UNAM), Mérida 97357, Mexico.

Department of Animal Sciences, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico.

出版信息

Diagnostics (Basel). 2025 Jun 17;15(12):1543. doi: 10.3390/diagnostics15121543.


DOI:10.3390/diagnostics15121543
PMID:40564863
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12191946/
Abstract

Cervical cancer (CC) is the fourth most common cancer among women worldwide. This study explored the use of machine learning (ML) and deep learning (DL) in the prediction, diagnosis, and prognosis of CC. An electronic search was conducted in the PubMed, IEEE, Web of Science, and Scopus databases from January 2015 to April 2025 using the search terms ML, DL, and uterine cervical neoplasms. A total of 153 studies were selected in this review. A comprehensive summary of the available evidence was compiled. We found that 54.9% of the studies addressed the application of ML and DL in CC for diagnostic purposes, followed by prognosis (22.9%) and an incipient focus on CC treatment (22.2%). The five countries where most ML and DL applications have been generated are China, the United States, India, Republic of Korea, and Japan. Of these studies, 48.4% proposed a DL-based approach, and the most frequent input data used to train the models on CC were images. Although there are results indicating a promising application of these artificial intelligence approaches in oncology clinical practice, further evidence of their validity and reproducibility is required for their use in early detection, prognosis, and therapeutic management of CC.

摘要

宫颈癌(CC)是全球女性中第四大常见癌症。本研究探讨了机器学习(ML)和深度学习(DL)在宫颈癌的预测、诊断和预后中的应用。2015年1月至2025年4月期间,在PubMed、IEEE、科学网和Scopus数据库中使用搜索词ML、DL和子宫颈肿瘤进行了电子检索。本综述共纳入153项研究。对现有证据进行了全面总结。我们发现,54.9%的研究涉及ML和DL在宫颈癌诊断中的应用,其次是预后(22.9%),以及对宫颈癌治疗的初步关注(22.2%)。产生最多ML和DL应用的五个国家是中国、美国、印度、韩国和日本。在这些研究中,48.4%提出了基于DL的方法,用于训练宫颈癌模型的最常见输入数据是图像。尽管有结果表明这些人工智能方法在肿瘤临床实践中有很有前景的应用,但在宫颈癌的早期检测、预后和治疗管理中使用它们还需要进一步的有效性和可重复性证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/7635527346c9/diagnostics-15-01543-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/7f4126f8cb12/diagnostics-15-01543-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/72f71766ff89/diagnostics-15-01543-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/b378c973182b/diagnostics-15-01543-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/f1bbc42f6369/diagnostics-15-01543-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/ebde5321a070/diagnostics-15-01543-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/d2f938a65887/diagnostics-15-01543-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/4e753d132829/diagnostics-15-01543-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/791e4f194d76/diagnostics-15-01543-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/72b742b015e1/diagnostics-15-01543-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/b91600673e4d/diagnostics-15-01543-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/0d91f68b6e93/diagnostics-15-01543-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/9b80027b6bba/diagnostics-15-01543-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/372692906d6f/diagnostics-15-01543-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/b03003133480/diagnostics-15-01543-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/8db8274bb9f4/diagnostics-15-01543-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/7635527346c9/diagnostics-15-01543-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/7f4126f8cb12/diagnostics-15-01543-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/72f71766ff89/diagnostics-15-01543-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/b378c973182b/diagnostics-15-01543-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/f1bbc42f6369/diagnostics-15-01543-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/ebde5321a070/diagnostics-15-01543-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/d2f938a65887/diagnostics-15-01543-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/4e753d132829/diagnostics-15-01543-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/791e4f194d76/diagnostics-15-01543-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/72b742b015e1/diagnostics-15-01543-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/b91600673e4d/diagnostics-15-01543-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/0d91f68b6e93/diagnostics-15-01543-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/9b80027b6bba/diagnostics-15-01543-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/372692906d6f/diagnostics-15-01543-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/b03003133480/diagnostics-15-01543-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/8db8274bb9f4/diagnostics-15-01543-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e0/12191946/7635527346c9/diagnostics-15-01543-g016.jpg

相似文献

[1]
Machine and Deep Learning for the Diagnosis, Prognosis, and Treatment of Cervical Cancer: A Scoping Review.

Diagnostics (Basel). 2025-6-17

[2]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[3]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[4]
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.

JBI Database System Rev Implement Rep. 2016-4

[5]
Blood biomarkers for the non-invasive diagnosis of endometriosis.

Cochrane Database Syst Rev. 2016-5-1

[6]
Interventions targeted at women to encourage the uptake of cervical screening.

Cochrane Database Syst Rev. 2021-9-6

[7]
Smoking cessation medicines and e-cigarettes: a systematic review, network meta-analysis and cost-effectiveness analysis.

Health Technol Assess. 2021-10

[8]
The measurement and monitoring of surgical adverse events.

Health Technol Assess. 2001

[9]
What is the value of routinely testing full blood count, electrolytes and urea, and pulmonary function tests before elective surgery in patients with no apparent clinical indication and in subgroups of patients with common comorbidities: a systematic review of the clinical and cost-effective literature.

Health Technol Assess. 2012-12

[10]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

本文引用的文献

[1]
Classification and diagnosis of cervical lesions based on colposcopy images using deep fully convolutional networks: A man-machine comparison cohort study.

Fundam Res. 2022-11-9

[2]
Weighted-VAE: A deep learning approach for multimodal data generation applied to experimental T. cruzi infection.

PLoS One. 2025-3-24

[3]
Externally validated and clinically useful machine learning algorithms to support patient-related decision-making in oncology: a scoping review.

BMC Med Res Methodol. 2025-2-21

[4]
Analysis of precancerous lesion-related microRNAs for early diagnosis of cervical cancer in the Thai population.

Sci Rep. 2025-1-2

[5]
Enhancing advanced cervical cell categorization with cluster-based intelligent systems by a novel integrated CNN approach with skip mechanisms and GAN-based augmentation.

Sci Rep. 2024-11-23

[6]
Transcriptional and post-transcriptional regulation of CARMN and its anti-tumor function in cervical cancer through autophagic flux blockade and MAPK cascade inhibition.

J Exp Clin Cancer Res. 2024-11-19

[7]
Clinical target volume (CTV) automatic delineation using deep learning network for cervical cancer radiotherapy: A study with external validation.

J Appl Clin Med Phys. 2025-1

[8]
Artificial intelligence strengthenes cervical cancer screening - present and future.

Cancer Biol Med. 2024-9-19

[9]
Multimodal MRI-based deep-radiomics model predicts response in cervical cancer treated with neoadjuvant chemoradiotherapy.

Sci Rep. 2024-8-17

[10]
Utilising deep learning networks to classify ZEB2 expression images in cervical cancer.

Br J Hosp Med (Lond). 2024-7-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索