Suppr超能文献

果蝇p24和Sec22在早期分泌途径中调节无翅蛋白的运输。

Drosophila p24 and Sec22 regulate Wingless trafficking in the early secretory pathway.

作者信息

Li Xue, Wu Yihui, Shen Chenghao, Belenkaya Tatyana Y, Ray Lorraine, Lin Xinhua

机构信息

State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.

State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

出版信息

Biochem Biophys Res Commun. 2015 Aug 7;463(4):483-9. doi: 10.1016/j.bbrc.2015.04.151. Epub 2015 May 20.

Abstract

The Wnt signaling pathway is crucial for development and disease. The regulation of Wnt protein trafficking is one of the pivotal issues in the Wnt research field. Here we performed a genetic screen in Drosophila melanogaster for genes involved in Wingless/Wnt secretion, and identified the p24 protein family members Baiser, CHOp24, Eclair and a v-SNARE protein Sec22, which are involved in the early secretory pathway of Wingless/Wnt. We provided genetic evidence demonstrating that loss of p24 proteins or Sec22 impedes Wingless (Wg) secretion in Drosophila wing imaginal discs. We found that Baiser cannot replace other p24 proteins (CHOp24 or Eclair) in escorting Wg, and only Baiser and CHOp24 interact with Wg. Moreover, we showed that the v-SNARE protein Sec22 and Wg are packaged together with p24 proteins. Taken together, our data provide important insights into the early secretory pathway of Wg/Wnt.

摘要

Wnt信号通路对发育和疾病至关重要。Wnt蛋白运输的调控是Wnt研究领域的关键问题之一。在此,我们在黑腹果蝇中对参与无翅型/无翅蛋白(Wingless/Wnt)分泌的基因进行了遗传筛选,并鉴定出参与无翅型/无翅蛋白早期分泌途径的p24蛋白家族成员Baiser、CHOp24、Eclair以及一种v-SNARE蛋白Sec22。我们提供了遗传学证据,证明p24蛋白或Sec22的缺失会阻碍果蝇翅成虫盘内无翅蛋白(Wg)的分泌。我们发现,在护送Wg过程中,Baiser不能替代其他p24蛋白(CHOp24或Eclair),且只有Baiser和CHOp24与Wg相互作用。此外,我们表明v-SNARE蛋白Sec22和Wg与p24蛋白一起被包装。综上所述,我们的数据为Wg/Wnt的早期分泌途径提供了重要见解。

相似文献

1
Drosophila p24 and Sec22 regulate Wingless trafficking in the early secretory pathway.
Biochem Biophys Res Commun. 2015 Aug 7;463(4):483-9. doi: 10.1016/j.bbrc.2015.04.151. Epub 2015 May 20.
2
Powerful Drosophila screens that paved the wingless pathway.
Fly (Austin). 2014;8(4):218-25. doi: 10.4161/19336934.2014.985988. Epub 2015 Jan 20.
3
The role of Bro1- domain-containing protein Myopic in endosomal trafficking of Wnt/Wingless.
Dev Biol. 2014 Aug 1;392(1):93-107. doi: 10.1016/j.ydbio.2014.04.019. Epub 2014 May 10.
4
5
Drosophila VAMP7 regulates Wingless intracellular trafficking.
PLoS One. 2017 Oct 24;12(10):e0186938. doi: 10.1371/journal.pone.0186938. eCollection 2017.
6
Sphingolipid depletion impairs endocytic traffic and inhibits Wingless signaling.
Mech Dev. 2013 Sep-Oct;130(9-10):493-505. doi: 10.1016/j.mod.2013.04.001. Epub 2013 May 9.
7
Exocyst-mediated apical Wg secretion activates signaling in the Drosophila wing epithelium.
PLoS Genet. 2019 Sep 17;15(9):e1008351. doi: 10.1371/journal.pgen.1008351. eCollection 2019 Sep.
8
SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless.
Cell Res. 2011 Dec;21(12):1677-90. doi: 10.1038/cr.2011.167. Epub 2011 Nov 1.
10
DWnt4 and wingless elicit similar cellular responses during imaginal development.
Dev Biol. 2001 Apr 15;232(2):339-50. doi: 10.1006/dbio.2001.0184.

引用本文的文献

1
Mechanistic insights into Wnt-β-catenin pathway activation and signal transduction.
Nat Rev Mol Cell Biol. 2025 May;26(5):371-388. doi: 10.1038/s41580-024-00823-y. Epub 2025 Jan 24.
2
TMED10 mediates the trafficking of insulin-like growth factor 2 along the secretory pathway for myoblast differentiation.
Proc Natl Acad Sci U S A. 2023 Nov 14;120(46):e2215285120. doi: 10.1073/pnas.2215285120. Epub 2023 Nov 6.
3
Repeat length of C9orf72-associated glycine-alanine polypeptides affects their toxicity.
Acta Neuropathol Commun. 2023 Aug 29;11(1):140. doi: 10.1186/s40478-023-01634-6.
6
The role of Evi/Wntless in exporting Wnt proteins.
Development. 2023 Feb 15;150(3). doi: 10.1242/dev.201352. Epub 2023 Feb 10.
8
Expression of TMED3 is independently associated with colorectal cancer prognosis.
Exp Ther Med. 2022 Apr;23(4):286. doi: 10.3892/etm.2022.11215. Epub 2022 Feb 15.
9
The Emerging Mechanisms of Wnt Secretion and Signaling in Development.
Front Cell Dev Biol. 2021 Aug 16;9:714746. doi: 10.3389/fcell.2021.714746. eCollection 2021.
10
AtSEC22 Regulates Cell Morphogenesis via Affecting Cytoskeleton Organization and Stabilities.
Front Plant Sci. 2021 Jun 4;12:635732. doi: 10.3389/fpls.2021.635732. eCollection 2021.

本文引用的文献

1
Isoform-selective oligomer formation of Saccharomyces cerevisiae p24 family proteins.
J Biol Chem. 2013 Dec 27;288(52):37057-70. doi: 10.1074/jbc.M113.518340. Epub 2013 Nov 11.
2
Roles of N-glycosylation and lipidation in Wg secretion and signaling.
Dev Biol. 2012 Apr 1;364(1):32-41. doi: 10.1016/j.ydbio.2012.01.009. Epub 2012 Jan 21.
3
Porcupine-mediated lipidation is required for Wnt recognition by Wls.
Dev Biol. 2012 Jan 15;361(2):392-402. doi: 10.1016/j.ydbio.2011.11.003. Epub 2011 Nov 11.
4
p24 proteins are required for secretion of Wnt ligands.
EMBO Rep. 2011 Dec 1;12(12):1265-72. doi: 10.1038/embor.2011.212.
5
6
Wnt/beta-catenin signaling: components, mechanisms, and diseases.
Dev Cell. 2009 Jul;17(1):9-26. doi: 10.1016/j.devcel.2009.06.016.
7
The p24 family and selective transport processes at the ER-Golgi interface.
Biol Cell. 2009 Sep;101(9):495-509. doi: 10.1042/BC20080233.
8
A comprehensive overview of the vertebrate p24 family: identification of a novel tissue-specifically expressed member.
Mol Biol Evol. 2009 Aug;26(8):1707-14. doi: 10.1093/molbev/msp099. Epub 2009 May 8.
9
COP-binding sites in p24delta2 are necessary for proper secretory cargo biosynthesis.
Int J Biochem Cell Biol. 2009 Jul;41(7):1619-27. doi: 10.1016/j.biocel.2009.02.010. Epub 2009 Feb 24.
10
Functional diversity among p24 subfamily members.
Biol Cell. 2009 Apr;101(4):207-19. doi: 10.1042/BC20080075.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验