Suppr超能文献

特发性间质性肺炎在间质性肺疾病患者中的分类:使用高维转录组数据评估机器学习方法。

Classification of usual interstitial pneumonia in patients with interstitial lung disease: assessment of a machine learning approach using high-dimensional transcriptional data.

机构信息

Veracyte, South San Francisco, CA, USA.

National Jewish Health, Denver, CO, USA.

出版信息

Lancet Respir Med. 2015 Jun;3(6):473-82. doi: 10.1016/S2213-2600(15)00140-X. Epub 2015 May 20.

Abstract

BACKGROUND

Idiopathic pulmonary fibrosis is a progressive fibrotic lung disease that distorts pulmonary architecture, leading to hypoxia, respiratory failure, and death. Diagnosis is difficult because other interstitial lung diseases have similar radiological and histopathological characteristics. A usual interstitial pneumonia pattern is a hallmark of idiopathic pulmonary fibrosis and is essential for its diagnosis. We aimed to develop a molecular test that distinguishes usual interstitial pneumonia from other interstitial lung diseases in surgical lung biopsy samples. The eventual goal of this research is to develop a method to diagnose idiopathic pulmonary fibrosis without the patient having to undergo surgery.

METHODS

We collected surgical lung biopsy samples from patients with various interstitial lung diseases at 11 hospitals in North America. Pathology diagnoses were confirmed by an expert panel. We measured RNA expression levels for 33 297 transcripts on microarrays in all samples. A classifier algorithm was trained on one set of samples and tested in a second set. We subjected a subset of samples to next-generation RNA sequencing (RNAseq) generating expression levels on 55 097 transcripts, and assessed a classifier trained on RNAseq data by cross-validation.

FINDINGS

We took 125 surgical lung biopsies from 86 patients. 58 samples were identified by the expert panel as usual interstitial pneumonia, 23 as non-specific interstitial pneumonia, 16 as hypersensitivity pneumonitis, four as sarcoidosis, four as respiratory bronchiolitis, two as organising pneumonia, and 18 as subtypes other than usual interstitial pneumonia. The microarray classifier was trained on 77 samples and was assessed in a test set of 48 samples, for which it had a specificity of 92% (95% CI 81-100) and a sensitivity of 82% (64-95). Based on a subset of 36 samples, the RNAseq classifier had a specificity of 95% (84-100) and a sensitivity of 59% (35-82).

INTERPRETATION

Our results show that the development of a genomic signature that predicts usual interstitial pneumonia is feasible. These findings are an important first step towards the development of a molecular test that could be applied to bronchoscopy samples, thus avoiding surgery in the diagnosis of idiopathic pulmonary fibrosis.

FUNDING

Veracyte.

摘要

背景

特发性肺纤维化是一种进行性肺纤维化疾病,会导致肺结构扭曲,引发缺氧、呼吸衰竭和死亡。由于其他间质性肺病具有相似的影像学和组织病理学特征,因此诊断较为困难。普通间质性肺炎模式是特发性肺纤维化的标志,对其诊断至关重要。我们旨在开发一种分子检测方法,以区分外科肺活检样本中的普通间质性肺炎和其他间质性肺病。这项研究的最终目标是开发一种无需患者进行手术即可诊断特发性肺纤维化的方法。

方法

我们在北美 11 家医院收集了各种间质性肺病患者的外科肺活检样本。病理学诊断由专家组确认。我们在所有样本上的微阵列上测量了 33297 个转录本的 RNA 表达水平。在一组样本上训练分类器算法,并在第二组样本上进行测试。我们对样本的一部分进行了下一代 RNA 测序(RNAseq),生成了 55097 个转录本的表达水平,并通过交叉验证评估了基于 RNAseq 数据训练的分类器。

结果

我们从 86 名患者中采集了 125 份外科肺活检样本。专家组鉴定出 58 份样本为普通间质性肺炎,23 份为非特异性间质性肺炎,16 份为过敏性肺炎,4 份为结节病,4 份为呼吸性细支气管炎,2 份为机化性肺炎,18 份为普通间质性肺炎以外的亚型。微阵列分类器在 77 个样本上进行了训练,并在 48 个样本的测试集上进行了评估,其特异性为 92%(81-100),敏感性为 82%(64-95)。基于 36 个样本的子集,RNAseq 分类器的特异性为 95%(84-100),敏感性为 59%(35-82)。

解释

我们的结果表明,开发预测普通间质性肺炎的基因组特征是可行的。这些发现是朝着开发可应用于支气管镜样本的分子检测方法迈出的重要第一步,从而避免了特发性肺纤维化的诊断性手术。

资金来源

Veracyte。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验