Suppr超能文献

基于并行VMamba和注意力机制的胸部X光片肺炎严重程度预测:一种采用分割肺替代增强的稳健模型

Parallel VMamba and Attention-Based Pneumonia Severity Prediction from CXRs: A Robust Model with Segmented Lung Replacement Augmentation.

作者信息

Slika Bouthaina, Dornaika Fadi, Hammoudi Karim

机构信息

Department of Computer Science and Artificial Intelligence, University of the Basque Country UPV/EHU, 200018 San Sebastian, Spain.

Faculty of Information Technology, Ho Chi Minh City Open University, Ho Chi Minh City 722000, Vietnam.

出版信息

Diagnostics (Basel). 2025 May 22;15(11):1301. doi: 10.3390/diagnostics15111301.

Abstract

Rapid and accurate assessment of lung diseases, like pneumonia, is critical for effective clinical decision-making, particularly during pandemics when disease progression can be severe. Early diagnosis plays a crucial role in preventing complications, necessitating the development of fast and efficient AI-based models for automated severity assessment. In this study, we introduce a novel approach that leverages VMamba, a state-of-the-art vision model based on the VisualStateSpace (VSS) framework and 2D-Selective-Scan (SS2D) spatial scanning, to enhance lung severity prediction. Integrated in a parallel multi-image regions approach, VMamba effectively captures global and local contextual features through structured state-space modeling, improving feature representation and robustness in medical image analysis. Additionally, we integrate a segmented lung replacement augmentation strategy to enhance data diversity and improve model generalization. The proposed method is trained on the RALO and COVID-19 datasets and compared against state-of-the-art models. Experimental results demonstrate that our approach achieves superior performance, outperforming existing techniques in prediction accuracy and robustness. Key evaluation metrics, including Mean Absolute Error (MAE) and Pearson Correlation (PC), confirm the model's effectiveness, while the incorporation of segmented lung replacement augmentation further enhances adaptability to diverse lung conditions. These findings highlight the potential of our method for reliable and immediate clinical applications in lung infection assessment.

摘要

快速准确地评估肺部疾病,如肺炎,对于有效的临床决策至关重要,尤其是在疾病进展可能很严重的大流行期间。早期诊断在预防并发症方面起着关键作用,因此需要开发快速高效的基于人工智能的模型来进行自动严重程度评估。在本研究中,我们引入了一种新颖的方法,该方法利用VMamba,一种基于视觉状态空间(VSS)框架和二维选择性扫描(SS2D)空间扫描的先进视觉模型,来增强肺部严重程度预测。VMamba集成在并行多图像区域方法中,通过结构化状态空间建模有效地捕获全局和局部上下文特征,提高了医学图像分析中的特征表示和鲁棒性。此外,我们集成了一种分割肺替代增强策略,以增强数据多样性并提高模型泛化能力。所提出的方法在RALO和COVID-19数据集上进行训练,并与现有技术进行比较。实验结果表明,我们的方法取得了卓越的性能,在预测准确性和鲁棒性方面优于现有技术。关键评估指标,包括平均绝对误差(MAE)和皮尔逊相关性(PC),证实了该模型的有效性,而分割肺替代增强的纳入进一步增强了对不同肺部状况的适应性。这些发现突出了我们的方法在肺部感染评估中进行可靠且即时临床应用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e225/12155560/209004c1d09a/diagnostics-15-01301-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验