Suppr超能文献

Envisia基因组分类器应用后的间质性肺疾病进展

Progression of interstitial lung disease after the Envisia Genomic Classifier.

作者信息

Chung Augustine, Oh Andrea, Durant Catherine, Watson Richard, Channick Jessica, Fishbein Greg, Pourzand Lila, Kim Sharon, Ronaghi Reza, Oh Scott, Kim Grace, Weigt S Sam

机构信息

Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Immunology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA.

Department of Radiologic Sciences, Division of Cardiothoracic Imaging, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA.

出版信息

ERJ Open Res. 2025 May 6;11(3). doi: 10.1183/23120541.00784-2024. eCollection 2025 May.

Abstract

BACKGROUND

Interstitial lung disease (ILD) represents a heterogenous group of diseases that have substantial morbidity and mortality. The Envisia Genomic Classifier (EGC) is a test that analyses RNA derived from transbronchial biopsy (TBBx) samples to make a positive or negative genomic usual interstitial pneumonitis (UIP) designation. Our study assesses the ability for the EGC to predict progression of disease, with a longer duration of follow-up than previous studies.

METHODS

Patients referred for cryobiopsy for outpatient workup of ILD concurrently had TBBx and EGC testing performed. We performed a retrospective analysis to assess differences in progression of disease between EGC-positive and negative patients, applying Kaplan-Meier survival analysis and log-rank tests. Confidence in ILD diagnosis before and after the EGC result was also noted, and the difference in confidence levels was assessed by a Wilcoxon signed-rank test.

RESULTS

82 patient cases were analysed. EGC-positive patients had a shorter progression-free survival (PFS) than EGC-negative patients, (p<0.0001), with 622 1487 median PFS days respectively. EGC-positive patients also had worse progression in the subsets of patients with "indeterminate for UIP" computed tomography (CT) (p=0.0052), "alternative diagnosis" CT (p=0.0144) and non-idiopathic pulmonary fibrosis ILD diagnosis (p=0.0157). Additionally, EGC increased the diagnostic confidence level (p<0.0001).

CONCLUSION

EGC positivity predicts worse ILD progression over a sustained follow-up period. The ability to predict worse prediction early in the ILD course without the need for surgical biopsy would have significant clinical impact.

摘要

背景

间质性肺疾病(ILD)是一组具有较高发病率和死亡率的异质性疾病。Envisia基因组分类器(EGC)是一种通过分析经支气管活检(TBBx)样本中的RNA来做出基因组学上的特发性肺纤维化(UIP)阳性或阴性诊断的检测方法。我们的研究评估了EGC预测疾病进展的能力,随访时间比以往研究更长。

方法

因ILD门诊检查而接受冷冻活检的患者同时进行了TBBx和EGC检测。我们进行了一项回顾性分析,应用Kaplan-Meier生存分析和对数秩检验来评估EGC阳性和阴性患者之间疾病进展的差异。同时记录了EGC结果前后对ILD诊断的信心,并通过Wilcoxon符号秩检验评估信心水平的差异。

结果

分析了82例患者病例。EGC阳性患者的无进展生存期(PFS)比EGC阴性患者短(p<0.0001),中位PFS分别为622天和1487天。EGC阳性患者在“UIP不能确定”的计算机断层扫描(CT)亚组(p=0.0052)、“其他诊断”CT亚组(p=0.0144)和非特发性肺纤维化ILD诊断亚组(p=0.0157)中的病情进展也更差。此外,EGC提高了诊断信心水平(p<0.0001)。

结论

EGC阳性预示着在持续随访期间ILD进展更差。在ILD病程早期无需手术活检就能预测更差预后的能力将具有重大临床意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1579/12053734/1e121dbe9b26/00784-2024.01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验