Suppr超能文献

一种构建和报告毒性读码预测的策略。

A strategy for structuring and reporting a read-across prediction of toxicity.

作者信息

Schultz T W, Amcoff P, Berggren E, Gautier F, Klaric M, Knight D J, Mahony C, Schwarz M, White A, Cronin M T D

机构信息

The University of Tennessee, College of Veterinary Medicine, Knoxville, TN 37996-4500, USA.

Cosmetics Europe, Avenue Herrmann Debroux 40, 1160 Brussels, Belgium.

出版信息

Regul Toxicol Pharmacol. 2015 Aug;72(3):586-601. doi: 10.1016/j.yrtph.2015.05.016. Epub 2015 May 21.

Abstract

Category formation, grouping and read across methods are broadly applicable in toxicological assessments and may be used to fill data gaps for chemical safety assessment and regulatory decisions. In order to facilitate a transparent and systematic approach to aid regulatory acceptance, a strategy to evaluate chemical category membership, to support the use of read-across predictions that may be used to fill data gaps for regulatory decisions is proposed. There are two major aspects of any read-across exercise, namely assessing similarity and uncertainty. While there can be an over-arching rationale for grouping organic substances based on molecular structure and chemical properties, these similarities alone are generally not sufficient to justify a read-across prediction. Further scientific justification is normally required to justify the chemical grouping, typically including considerations of bioavailability, metabolism and biological/mechanistic plausibility. Sources of uncertainty include a variety of elements which are typically divided into two main issues: the uncertainty associated firstly with the similarity justification and secondly the completeness of the read-across argument. This article focuses on chronic toxicity, whilst acknowledging the approaches are applicable to all endpoints. Templates, developed from work to prepare for the application of new toxicological data to read-across assessment, are presented. These templates act as proposals to assist in assessing similarity in the context of chemistry, toxicokinetics and toxicodynamics as well as to guide the systematic characterisation of uncertainty both in the context of the similarity rationale, the read across data and overall approach and conclusion. Lastly, a workflow for reporting a read-across prediction is suggested.

摘要

类别形成、分组和类推法在毒理学评估中具有广泛适用性,可用于填补化学安全评估和监管决策的数据空白。为了促进采用透明且系统的方法以助于监管部门接受,本文提出了一种评估化学类别归属的策略,以支持使用类推预测来填补监管决策的数据空白。任何类推应用都有两个主要方面,即评估相似性和不确定性。虽然基于分子结构和化学性质对有机物质进行分组可能有总体的基本原理,但仅这些相似性通常不足以证明类推预测的合理性。通常还需要进一步的科学依据来证明化学分组的合理性,这通常包括对生物利用度、代谢以及生物学/作用机制合理性的考虑。不确定性来源包括多种因素,通常分为两个主要问题:首先是与相似性依据相关的不确定性,其次是类推论证的完整性。本文重点关注慢性毒性,同时承认这些方法适用于所有终点。文中展示了从为将新的毒理学数据应用于类推评估做准备的工作中开发的模板。这些模板作为建议,有助于在化学、毒代动力学和毒理学方面评估相似性,同时指导在相似性原理、类推数据以及总体方法和结论的背景下对不确定性进行系统表征。最后,本文提出了报告类推预测的工作流程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验