Suppr超能文献

阅读跨越方法:韩国、日本和中国的当前应用和监管接受情况。

Read-across approaches: current applications and regulatory acceptance in Korea, Japan, and China.

机构信息

Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Gyeonggi-Do, Korea.

Chemicals Registration & Evaluation Team, Risk Assessment Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Korea.

出版信息

J Toxicol Environ Health A. 2022 Mar 4;85(5):184-197. doi: 10.1080/15287394.2021.1992323. Epub 2021 Oct 20.

Abstract

The aim of this paper was to investigate the current status of read-across approaches in the Republic of Korea, Japan, and China in terms of applications and regulatory acceptance. In the Republic of Korea, over the last 6 years, approximately 8% of safety data records used for chemical registrations were based upon read-across, and a guideline published on the use of read-across results in 2017. In Japan, read-across is generally accepted for screening hazard classification of toxicological endpoints according to the Chemical Substances Control Law (CSCL). In China, read-across data, along with data from other animal alternatives are accepted as a data source for chemical registrations, but could be only considered when testing is not technically feasible. At present, read-across is not widely used for chemical registrations and regulatory acceptance of read-across may differ among countries in Asia. With consideration of the advantages and limitations of read-across, it is expected that read-across may soon gradually be employed in Asian countries. Thus, regulatory agencies need to prepare for this progression.

摘要

本文旨在探讨韩国、日本和中国在应用和监管接受方面的交叉阅读方法的现状。在韩国,在过去的 6 年中,大约 8%的化学品注册安全数据记录是基于交叉阅读的,并且在 2017 年发布了关于使用交叉阅读结果的指南。在日本,根据《化学物质控制法》(CSCL),交叉阅读通常被接受用于毒理学终点的筛选危害分类。在中国,交叉阅读数据以及其他动物替代数据被接受为化学品注册的数据来源,但只有在技术上不可行时才可以考虑。目前,交叉阅读在化学品注册中并未广泛应用,而且亚洲国家对交叉阅读的监管接受程度可能存在差异。考虑到交叉阅读的优点和局限性,预计交叉阅读可能很快在亚洲国家逐渐得到采用。因此,监管机构需要为此做好准备。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验