Suppr超能文献

后生动物纺锤体形态计量学的比较分析。

A comparative analysis of spindle morphometrics across metazoans.

作者信息

Crowder Marina E, Strzelecka Magdalena, Wilbur Jeremy D, Good Matthew C, von Dassow George, Heald Rebecca

机构信息

Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA.

Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA.

出版信息

Curr Biol. 2015 Jun 1;25(11):1542-50. doi: 10.1016/j.cub.2015.04.036. Epub 2015 May 21.

Abstract

Cell division in all eukaryotes depends on function of the spindle, a microtubule-based structure that segregates chromosomes to generate daughter cells in mitosis or haploid gametes in meiosis. Spindle size adapts to changes in cell size and shape, which vary dramatically across species and within a multicellular organism, but the nature of scaling events and their underlying mechanisms are poorly understood. Cell size variations are most pronounced in early animal development, as egg diameters range from tens of microns up to millimeters across animal phyla, and decrease several orders of magnitude during rapid reductive divisions. During early embryogenesis in the model organisms X. laevis and C. elegans, the spindle scales with cell size [1, 2], a phenomenon regulated by molecules that modulate microtubule dynamics [3-6], as well as by limiting cytoplasmic volume [7, 8]. However, it is not known to what extent spindle scaling is conserved across organisms and among different cell types. Here we show that in a range of metazoan phyla, mitotic spindle length decreased with cell size across an ∼30-fold difference in zygote size. Maximum spindle length varied, but linear spindle scaling occurred similarly in all species once embryonic cell diameter reduced to 140 μm. In contrast, we find that the female meiotic spindle does not scale as closely to egg size, adopting a more uniform size across species that most likely reflects its specialized function. Our analysis reveals that spindle morphometrics change abruptly, within one cell cycle, at the transition from meiosis to mitosis in most animals.

摘要

所有真核生物的细胞分裂都依赖于纺锤体的功能,纺锤体是一种基于微管的结构,在有丝分裂中分离染色体以产生子细胞,或在减数分裂中分离染色体以产生单倍体配子。纺锤体的大小会适应细胞大小和形状的变化,这些变化在不同物种之间以及多细胞生物体内差异很大,但缩放事件的本质及其潜在机制却知之甚少。细胞大小的变化在动物早期发育中最为明显,因为不同动物门的卵直径从几十微米到几毫米不等,并且在快速减数分裂过程中会减小几个数量级。在模式生物非洲爪蟾和秀丽隐杆线虫的早期胚胎发育过程中,纺锤体大小与细胞大小成比例[1,2],这一现象受调节微管动力学的分子[3-6]以及限制细胞质体积[7,8]的调控。然而,目前尚不清楚纺锤体缩放在不同生物体和不同细胞类型之间的保守程度。在这里,我们表明,在一系列后生动物门中,有丝分裂纺锤体长度随着细胞大小的变化而减小,合子大小相差约30倍。最大纺锤体长度各不相同,但一旦胚胎细胞直径减小到140μm,所有物种的纺锤体线性缩放情况相似。相比之下,我们发现雌性减数分裂纺锤体与卵大小的比例关系不那么紧密,在不同物种中采用更统一的大小,这很可能反映了其特殊功能。我们的分析表明,在大多数动物中,从减数分裂到有丝分裂的转变过程中,纺锤体形态在一个细胞周期内会突然发生变化。

相似文献

1
A comparative analysis of spindle morphometrics across metazoans.
Curr Biol. 2015 Jun 1;25(11):1542-50. doi: 10.1016/j.cub.2015.04.036. Epub 2015 May 21.
2
Splitting the cell, building the organism: Mechanisms of cell division in metazoan embryos.
IUBMB Life. 2015 Jul;67(7):575-87. doi: 10.1002/iub.1404. Epub 2015 Jul 14.
3
Katanin controls mitotic and meiotic spindle length.
J Cell Biol. 2006 Dec 18;175(6):881-91. doi: 10.1083/jcb.200608117.
4
Size Scaling of Microtubule Assemblies in Early Xenopus Embryos.
Cold Spring Harb Perspect Biol. 2015 Aug 10;7(10):a019182. doi: 10.1101/cshperspect.a019182.
5
Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing.
Dev Cell. 2018 May 21;45(4):496-511.e6. doi: 10.1016/j.devcel.2018.04.022.
6
Control of mitotic spindle length.
Annu Rev Cell Dev Biol. 2010;26:21-57. doi: 10.1146/annurev-cellbio-100109-104006.
7
Mitotic chromosome size scaling in Xenopus.
Cell Cycle. 2011 Nov 15;10(22):3863-70. doi: 10.4161/cc.10.22.17975.
8
How to be at the right place at the right time: the importance of spindle positioning in embryos.
Mol Reprod Dev. 2014 Oct;81(10):884-95. doi: 10.1002/mrd.22418. Epub 2014 Sep 25.
9
Evidence for an upper limit to mitotic spindle length.
Curr Biol. 2008 Aug 26;18(16):1256-61. doi: 10.1016/j.cub.2008.07.092.
10
Mitotic chromosomes scale to nuclear-cytoplasmic ratio and cell size in .
Elife. 2023 Apr 25;12:e84360. doi: 10.7554/eLife.84360.

引用本文的文献

1
Fixation and Expansion Microscopy of Egg Extract Spindles.
Bio Protoc. 2025 Jul 20;15(14):e5396. doi: 10.21769/BioProtoc.5396.
2
Spindle morphology changes between meiosis and mitosis driven by CK2 regulation of the Ran pathway.
J Cell Biol. 2025 Aug 4;224(8). doi: 10.1083/jcb.202407154. Epub 2025 Jul 1.
3
Cell state-specific cytoplasmic density controls spindle architecture and scaling.
Nat Cell Biol. 2025 Jun;27(6):959-971. doi: 10.1038/s41556-025-01678-x. Epub 2025 Jun 13.
4
Optimized expansion microscopy reveals species-specific spindle microtubule organization in egg extracts.
Mol Biol Cell. 2025 Jun 1;36(6):ar73. doi: 10.1091/mbc.E24-09-0421. Epub 2025 May 6.
5
The NLS3 Motif in TPX2 Regulates Spindle Architecture in Xenopus Egg Extracts.
Cytoskeleton (Hoboken). 2025 May 6. doi: 10.1002/cm.22034.
6
On the origin of mitosis-derived human embryo aneuploidy.
Nat Commun. 2024 Nov 29;15(1):10391. doi: 10.1038/s41467-024-54953-0.
7
Optimized expansion microscopy reveals species-specific spindle microtubule organization in egg extracts.
bioRxiv. 2024 Sep 25:2024.09.11.612005. doi: 10.1101/2024.09.11.612005.
8
Maternal inheritance of functional centrioles in two parthenogenetic nematodes.
Nat Commun. 2024 Jul 18;15(1):6042. doi: 10.1038/s41467-024-50427-5.
10
Centriole elimination during Caenorhabditis elegans oogenesis initiates with loss of the central tube protein SAS-1.
EMBO J. 2023 Dec 11;42(24):e115076. doi: 10.15252/embj.2023115076. Epub 2023 Nov 21.

本文引用的文献

1
Scaling, selection, and evolutionary dynamics of the mitotic spindle.
Curr Biol. 2015 Mar 16;25(6):732-740. doi: 10.1016/j.cub.2014.12.060. Epub 2015 Feb 12.
2
Microtubule nucleation remote from centrosomes may explain how asters span large cells.
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17715-22. doi: 10.1073/pnas.1418796111. Epub 2014 Dec 2.
3
Length-dependent anisotropic scaling of spindle shape.
Biol Open. 2014 Nov 21;3(12):1217-23. doi: 10.1242/bio.201410363.
4
Cytoplasmic volume modulates spindle size during embryogenesis.
Science. 2013 Nov 15;342(6160):856-60. doi: 10.1126/science.1243147.
5
Changes in cytoplasmic volume are sufficient to drive spindle scaling.
Science. 2013 Nov 15;342(6160):853-6. doi: 10.1126/science.1243110.
6
Mechanistic foundations of the metaphase II spindle of human oocytes matured in vivo and in vitro.
Hum Reprod. 2013 Dec;28(12):3271-82. doi: 10.1093/humrep/det381. Epub 2013 Oct 15.
7
XMAP215 activity sets spindle length by controlling the total mass of spindle microtubules.
Nat Cell Biol. 2013 Sep;15(9):1116-22. doi: 10.1038/ncb2834. Epub 2013 Aug 25.
8
Intranuclear DNA density affects chromosome condensation in metazoans.
Mol Biol Cell. 2013 Aug;24(15):2442-53. doi: 10.1091/mbc.E13-01-0043. Epub 2013 Jun 19.
9
The chromosomal passenger protein birc5b organizes microfilaments and germ plasm in the zebrafish embryo.
PLoS Genet. 2013 Apr;9(4):e1003448. doi: 10.1371/journal.pgen.1003448. Epub 2013 Apr 18.
10
An allometric relationship between mitotic spindle width, spindle length, and ploidy in Caenorhabditis elegans embryos.
Mol Biol Cell. 2013 May;24(9):1411-9. doi: 10.1091/mbc.E12-07-0528. Epub 2013 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验