Guilloux Gabriel, Kitaoka Maiko, Mocaer Karel, Heichette Claire, Duchesne Laurence, Heald Rebecca, Pecot Thierry, Gibeaux Romain
Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) - UMR 6290, Rennes F-35000, France.
Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720.
Mol Biol Cell. 2025 Jun 1;36(6):ar73. doi: 10.1091/mbc.E24-09-0421. Epub 2025 May 6.
The spindle is key to cell division, ensuring accurate chromosome segregation. Although its assembly and function are well studied, the mechanisms regulating spindle architecture remain elusive. Here, we investigate spindle organization differences between and , leveraging expansion microscopy (ExM) to overcome conventional imaging limitations. We optimized an ExM protocol tailored for egg extract spindles, refining fixation, denaturation, and gelation to achieve higher resolution while preserving spindle integrity. Our protocol enables preexpansion immunofluorescence and is seamlessly compatible with both species. To quantitatively compare microtubule organization in expanded spindles between the two species, we developed an analysis pipeline that is able to characterize microtubule bundles throughout spindles. We show that spindles exhibit overall a broader range of bundle sizes, while spindles contain mostly smaller bundles. Although both species show larger bundles near the spindle center, spindles otherwise consist of very small bundles, whereas spindles contain more medium-sized bundles. Altogether, our work reveals species-specific spindle architectures and suggests their adaptation to the different spindle size and chromatin amount. By enhancing resolution and minimizing artifacts, our ExM approach provides new insights into spindle morphology and a robust tool for further studying these large cellular assemblies.
纺锤体是细胞分裂的关键,可确保染色体准确分离。尽管其组装和功能已得到充分研究,但调节纺锤体结构的机制仍不清楚。在这里,我们利用扩展显微镜(ExM)来克服传统成像的局限性,研究[具体物种1]和[具体物种2]之间纺锤体组织的差异。我们优化了一种针对[具体物种1]卵提取物纺锤体的ExM方案,改进了固定、变性和凝胶化过程,以在保持纺锤体完整性的同时实现更高分辨率。我们的方案能够进行预扩展免疫荧光,并且与这两个物种都能无缝兼容。为了定量比较这两个物种扩展纺锤体中的微管组织,我们开发了一种分析流程,能够对整个纺锤体中的微管束进行表征。我们发现,[具体物种1]纺锤体总体上显示出更广泛的束大小范围,而[具体物种2]纺锤体大多包含较小的束。虽然这两个物种在纺锤体中心附近都显示出较大的束,但[具体物种1]纺锤体其他部分由非常小的束组成,而[具体物种2]纺锤体包含更多中等大小的束。总之,我们的工作揭示了物种特异性的纺锤体结构,并表明它们适应了不同的纺锤体大小和染色质数量。通过提高分辨率和最小化伪像,我们的ExM方法为纺锤体形态提供了新的见解,并为进一步研究这些大型细胞组件提供了一个强大的工具。