Guilloux Gabriel, Kitaoka Maiko, Mocaer Karel, Heichette Claire, Duchesne Laurence, Heald Rebecca, Pecot Thierry, Gibeaux Romain
Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) - UMR 6290, Rennes F-35000, France.
Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
Bio Protoc. 2025 Jul 20;15(14):e5396. doi: 10.21769/BioProtoc.5396.
In vitro systems based on egg extracts have elucidated many aspects of spindle assembly. Still, numerous unknowns remain, particularly concerning the variation in spindle morphologies. The and egg extract systems, which recapitulate diverse spindle sizes and architectures, serve as ideal tools to investigate the regulation of spindle morphometrics. However, fully understanding spindle architectural differences is hindered by the spindle's size and high microtubule density. Indeed, classical fluorescence microscopy lacks the resolution to detail the organization of spindle microtubules, and although electron tomography can distinguish individual microtubules, segmenting thousands of microtubules and tracking them across dozens of sections remains an unachieved challenge. Therefore, we set out to apply expansion microscopy to the study of egg extract spindles. During this process, we realized that optimizing spindle fixation as well was crucial to preserve microtubule integrity. Here, we present an optimized fixation and expansion microscopy protocol that enables the study of spindle architecture in egg extracts of both and . Our method retains the fluorescence of rhodamine tubulins added to the extracts and allows for both pre- and post-expansion immunofluorescence analysis. Key features • Expansion of optimally fixed spindle assembled from egg extracts of , and possibly others. • Retains the fluorescence of the rhodamine-tubulin that copolymerizes with endogenous tubulin within spindle microtubules, allowing their imaging without immunolabeling. • Compatible with both pre- and post-expansion immunolabeling to increase labeling possibilities. • Optimized spindle fixation that best preserves microtubule integrity for expansion and can also be used without expansion for regular immunofluorescence experiments.
基于卵提取物的体外系统已阐明了纺锤体组装的许多方面。然而,仍有许多未知之处,特别是关于纺锤体形态的变化。爪蟾和非洲爪蟾卵提取物系统能够重现不同的纺锤体大小和结构,是研究纺锤体形态测量调控的理想工具。然而,由于纺锤体的大小和高微管密度,对纺锤体结构差异的全面理解受到阻碍。实际上,传统荧光显微镜缺乏分辨纺锤体微管组织细节的分辨率,虽然电子断层扫描可以区分单个微管,但对数千根微管进行分割并在数十个切片中追踪它们仍然是一项尚未实现的挑战。因此,我们着手将扩张显微镜应用于爪蟾卵提取物纺锤体的研究。在此过程中,我们意识到优化纺锤体固定对于保持微管完整性也至关重要。在这里,我们展示了一种优化的固定和扩张显微镜方案,可用于研究爪蟾和非洲爪蟾卵提取物中的纺锤体结构。我们的方法保留了添加到提取物中的罗丹明微管蛋白的荧光,并允许进行扩张前和扩张后的免疫荧光分析。关键特性 • 对由爪蟾及可能其他物种的卵提取物组装的最佳固定纺锤体进行扩张。 • 保留与纺锤体微管内的内源性微管蛋白共聚的罗丹明 - 微管蛋白的荧光,无需免疫标记即可对其成像。 • 与扩张前和扩张后的免疫标记兼容,以增加标记可能性。 • 优化的纺锤体固定,能最好地保持微管完整性以进行扩张,也可在不进行扩张时用于常规免疫荧光实验。