Suppr超能文献

通过激励用户来塑造社交活动。

Shaping Social Activity by Incentivizing Users.

作者信息

Farajtabar Mehrdad, Du Nan, Rodriguez Manuel Gomez, Valera Isabel, Zha Hongyuan, Song Le

机构信息

Georgia Institute of Technology.

Max Plank Institute for Intelligent Systems.

出版信息

Adv Neural Inf Process Syst. 2014;27.

Abstract

Events in an online social network can be categorized roughly into events, where users just respond to the actions of their neighbors within the network, or events, where users take actions due to drives external to the network. How much external drive should be provided to each user, such that the network activity can be steered towards a target state? In this paper, we model social events using multivariate Hawkes processes, which can capture both endogenous and exogenous event intensities, and derive a time dependent linear relation between the intensity of exogenous events and the overall network activity. Exploiting this connection, we develop a convex optimization framework for determining the required level of external drive in order for the network to reach a desired activity level. We experimented with event data gathered from Twitter, and show that our method can steer the activity of the network more accurately than alternatives.

摘要

在线社交网络中的事件大致可分为两类

一类是用户仅对网络中邻居的行为做出反应的事件;另一类是用户由于网络外部驱动力而采取行动的事件。应该为每个用户提供多少外部驱动力,才能使网络活动朝着目标状态发展?在本文中,我们使用多元霍克斯过程对社交事件进行建模,该过程可以捕捉内生和外生事件强度,并推导出外生事件强度与整体网络活动之间的时间相关线性关系。利用这种联系,我们开发了一个凸优化框架,用于确定所需的外部驱动力水平,以使网络达到期望的活动水平。我们对从推特收集的事件数据进行了实验,结果表明我们的方法比其他方法能更准确地引导网络活动。

相似文献

1
Shaping Social Activity by Incentivizing Users.
Adv Neural Inf Process Syst. 2014;27.
2
Classification of Twitter Users Who Tweet About E-Cigarettes.
JMIR Public Health Surveill. 2017 Sep 26;3(3):e63. doi: 10.2196/publichealth.8060.
3
Learning Automata-based Misinformation Mitigation via Hawkes Processes.
Inf Syst Front. 2021;23(5):1169-1188. doi: 10.1007/s10796-020-10102-8. Epub 2021 Feb 12.
4
Hearing loss on social media: Who is winning hearts and minds?
Laryngoscope. 2018 Jun;128(6):1453-1461. doi: 10.1002/lary.26902. Epub 2017 Oct 8.
5
E-Cigarette Surveillance With Social Media Data: Social Bots, Emerging Topics, and Trends.
JMIR Public Health Surveill. 2017 Dec 20;3(4):e98. doi: 10.2196/publichealth.8641.
6
User emotion for modeling retweeting behaviors.
Neural Netw. 2017 Dec;96:11-21. doi: 10.1016/j.neunet.2017.08.006. Epub 2017 Sep 8.
7
Opinion formation on social media: an empirical approach.
Chaos. 2014 Mar;24(1):013130. doi: 10.1063/1.4866011.
8
Does the type of event influence how user interactions evolve on Twitter?
PLoS One. 2015 May 11;10(5):e0124049. doi: 10.1371/journal.pone.0124049. eCollection 2015.
10
Engagement as a Driver of Growth of Online Health Forums: Observational Study.
J Med Internet Res. 2017 Aug 29;19(8):e304. doi: 10.2196/jmir.7249.

引用本文的文献

2
Scalable distributed gate-model quantum computers.
Sci Rep. 2021 Feb 26;11(1):5172. doi: 10.1038/s41598-020-76728-5.
3
Learning Automata-based Misinformation Mitigation via Hawkes Processes.
Inf Syst Front. 2021;23(5):1169-1188. doi: 10.1007/s10796-020-10102-8. Epub 2021 Feb 12.
5
Recurrent spatio-temporal modeling of check-ins in location-based social networks.
PLoS One. 2018 May 23;13(5):e0197683. doi: 10.1371/journal.pone.0197683. eCollection 2018.

本文引用的文献

1
Scalable Influence Estimation in Continuous-Time Diffusion Networks.
Adv Neural Inf Process Syst. 2013;26:3147-3155.
2
Extending earthquakes' reach through cascading.
Science. 2008 Feb 22;319(5866):1076-9. doi: 10.1126/science.1148783.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验