Suppr超能文献

可扩展分布式门模型量子计算机。

Scalable distributed gate-model quantum computers.

作者信息

Gyongyosi Laszlo, Imre Sandor

机构信息

Department of Networked Systems and Services, Budapest University of Technology and Economics, Budapest, 1117, Hungary.

MTA-BME Information Systems Research Group, Hungarian Academy of Sciences, Budapest, 1051, Hungary.

出版信息

Sci Rep. 2021 Feb 26;11(1):5172. doi: 10.1038/s41598-020-76728-5.

Abstract

A scalable model for a distributed quantum computation is a challenging problem due to the complexity of the problem space provided by the diversity of possible quantum systems, from small-scale quantum devices to large-scale quantum computers. Here, we define a model of scalable distributed gate-model quantum computation in near-term quantum systems of the NISQ (noisy intermediate scale quantum) technology era. We prove that the proposed architecture can maximize an objective function of a computational problem in a distributed manner. We study the impacts of decoherence on distributed objective function evaluation.

摘要

由于从小型量子设备到大型量子计算机等各种可能的量子系统所提供的问题空间的复杂性,分布式量子计算的可扩展模型是一个具有挑战性的问题。在此,我们定义了一个适用于NISQ(有噪声中等规模量子)技术时代近期量子系统的可扩展分布式门模型量子计算模型。我们证明,所提出的架构能够以分布式方式最大化一个计算问题的目标函数。我们研究了退相干对分布式目标函数评估的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0d6/7910494/27167d730119/41598_2020_76728_Fig1_HTML.jpg

相似文献

1
Scalable distributed gate-model quantum computers.
Sci Rep. 2021 Feb 26;11(1):5172. doi: 10.1038/s41598-020-76728-5.
2
The complexity of NISQ.
Nat Commun. 2023 Sep 26;14(1):6001. doi: 10.1038/s41467-023-41217-6.
3
Quantum State Optimization and Computational Pathway Evaluation for Gate-Model Quantum Computers.
Sci Rep. 2020 Mar 11;10(1):4543. doi: 10.1038/s41598-020-61316-4.
4
Optimal quantum reservoir computing for the noisy intermediate-scale quantum era.
Phys Rev E. 2022 Oct;106(4):L043301. doi: 10.1103/PhysRevE.106.L043301.
5
Realization of higher-order topological lattices on a quantum computer.
Nat Commun. 2024 Jul 10;15(1):5807. doi: 10.1038/s41467-024-49648-5.
6
Error rate reduction of single-qubit gates via noise-aware decomposition into native gates.
Sci Rep. 2022 Apr 16;12(1):6379. doi: 10.1038/s41598-022-10339-0.
7
Circuit Depth Reduction for Gate-Model Quantum Computers.
Sci Rep. 2020 Jul 8;10(1):11229. doi: 10.1038/s41598-020-67014-5.
8
Variational Quantum Simulation of Chemical Dynamics with Quantum Computers.
J Chem Theory Comput. 2022 Apr 12;18(4):2105-2113. doi: 10.1021/acs.jctc.1c01176. Epub 2022 Mar 16.
9
Material-Inherent Noise Sources in Quantum Information Architecture.
Materials (Basel). 2023 Mar 23;16(7):2561. doi: 10.3390/ma16072561.
10
Quantum computing for near-term applications in generative chemistry and drug discovery.
Drug Discov Today. 2023 Aug;28(8):103675. doi: 10.1016/j.drudis.2023.103675. Epub 2023 Jun 16.

引用本文的文献

1
Quantum inspired qubit qutrit neural networks for real time financial forecasting.
Sci Rep. 2025 Aug 6;15(1):28711. doi: 10.1038/s41598-025-09475-0.
2
Quantum circuits from non-unitary sparse binary matrices.
Sci Rep. 2025 Jul 2;15(1):22502. doi: 10.1038/s41598-025-03424-7.
4
Quantum contingency analysis for power system steady-state security identification.
Sci Rep. 2025 Apr 30;15(1):15148. doi: 10.1038/s41598-025-98776-5.
6
Comparison of the similarity between two quantum images.
Sci Rep. 2022 May 11;12(1):7776. doi: 10.1038/s41598-022-11863-9.
7
Hybrid quantum investment optimization with minimal holding period.
Sci Rep. 2021 Oct 1;11(1):19587. doi: 10.1038/s41598-021-98297-x.
8
Resource prioritization and balancing for the quantum internet.
Sci Rep. 2020 Dec 28;10(1):22390. doi: 10.1038/s41598-020-78960-5.

本文引用的文献

1
Distributed secure quantum machine learning.
Sci Bull (Beijing). 2017 Jul 30;62(14):1025-1029. doi: 10.1016/j.scib.2017.06.007. Epub 2017 Jun 27.
4
Solving complex eigenvalue problems on a quantum annealer with applications to quantum scattering resonances.
Phys Chem Chem Phys. 2020 Nov 25;22(45):26136-26144. doi: 10.1039/d0cp04272b.
5
Demonstrating a Continuous Set of Two-Qubit Gates for Near-Term Quantum Algorithms.
Phys Rev Lett. 2020 Sep 18;125(12):120504. doi: 10.1103/PhysRevLett.125.120504.
6
Entangling capacities and the geometry of quantum operations.
Sci Rep. 2020 Sep 29;10(1):15978. doi: 10.1038/s41598-020-72881-z.
7
Quantum circuit optimization using quantum Karnaugh map.
Sci Rep. 2020 Sep 24;10(1):15651. doi: 10.1038/s41598-020-72469-7.
8
Hartree-Fock on a superconducting qubit quantum computer.
Science. 2020 Aug 28;369(6507):1084-1089. doi: 10.1126/science.abb9811.
9
Objective function estimation for solving optimization problems in gate-model quantum computers.
Sci Rep. 2020 Aug 26;10(1):14220. doi: 10.1038/s41598-020-71007-9.
10
Massively parallel classical logic via coherent dynamics of an ensemble of quantum systems with dispersion in size.
Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21022-21030. doi: 10.1073/pnas.2008170117. Epub 2020 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验