Du Nan, Song Le, Gomez-Rodriguez Manuel, Zha Hongyuan
Georgia Institute of Technology.
MPI for Intelligent Systems.
Adv Neural Inf Process Syst. 2013;26:3147-3155.
If a piece of information is released from a media site, can we predict whether it may spread to one million web pages, in a month ? This influence estimation problem is very challenging since both the time-sensitive nature of the task and the requirement of scalability need to be addressed simultaneously. In this paper, we propose a randomized algorithm for influence estimation in continuous-time diffusion networks. Our algorithm can estimate the influence of every node in a network with || nodes and || edges to an accuracy of using = (1/) randomizations and up to logarithmic factors (||+||) computations. When used as a subroutine in a greedy influence maximization approach, our proposed algorithm is guaranteed to find a set of nodes with the influence of at least (1 - 1/) OPT - 2 , where OPT is the optimal value. Experiments on both synthetic and real-world data show that the proposed algorithm can easily scale up to networks of millions of nodes while significantly improves over previous state-of-the-arts in terms of the accuracy of the estimated influence and the quality of the selected nodes in maximizing the influence.
如果一条信息从某个媒体网站发布,我们能否预测它在一个月内是否可能传播到一百万个网页?这个影响力估计问题极具挑战性,因为需要同时解决任务的时间敏感性和可扩展性要求。在本文中,我们提出了一种用于连续时间扩散网络中影响力估计的随机算法。我们的算法能够以 = (1/) 次随机化和最多对数因子 (|| + ||) 次计算,估计具有 || 个节点和 || 条边的网络中每个节点的影响力,精度达到 。当用作贪婪影响力最大化方法中的一个子程序时,我们提出的算法保证能找到一组 个节点,其影响力至少为 (1 - 1/) OPT - 2 ,其中 OPT 是最优值。在合成数据和真实世界数据上的实验表明,所提出的算法能够轻松扩展到数百万节点的网络,同时在估计影响力的准确性以及在最大化影响力时所选节点的质量方面,显著优于先前的最先进方法。