Suppr超能文献

静电纺丝纳米纤维SF/P(LLA-CL)膜:一种用于内皮角膜移植的潜在基质。

Electrospun nanofibrous SF/P(LLA-CL) membrane: a potential substratum for endothelial keratoplasty.

作者信息

Chen Junzhao, Yan Chenxi, Zhu Mengyu, Yao Qinke, Shao Chunyi, Lu Wenjuan, Wang Jing, Mo Xiumei, Gu Ping, Fu Yao, Fan Xianqun

机构信息

Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.

Biomaterials and Tissue Engineering Laboratory, College of Chemistry and Chemical Engineering and Biotechnology, Donghua University, Shanghai, People's Republic of China.

出版信息

Int J Nanomedicine. 2015 May 5;10:3337-50. doi: 10.2147/IJN.S77706. eCollection 2015.

Abstract

BACKGROUND

Cornea transplant technology has progressed markedly in recent decades, allowing surgeons to replace diseased corneal endothelium by a thin lamellar structure. A thin, transparent, biocompatible, tissue-engineered substratum with corneal endothelial cells for endothelial keratoplasty is currently of interest. Electrospinning a nanofibrous structure can simulate the extracellular matrix and have beneficial effects for cell culture. Silk fibroin (SF) has good biocompatibility but poor mechanical properties, while poly(L-lactic acid-co-ε-caprolactone) (P(LLA-CL)) has good mechanical properties but poor biocompatibility. Blending SF with P(LLA-CL) can maintain the advantages of both these materials and overcome their disadvantages. Blended electrospun nanofibrous membranes may be suitable for regeneration of the corneal endothelium. The aim of this study was to produce a tissue-engineered construct suitable for endothelial keratoplasty.

METHODS

Five scaffolds containing different SF:P(LLA-CL) blended ratios (100:0, 75:25, 50:50, 25:75, 0:100) were manufactured. A human corneal endothelial (B4G12) cell line was cultured on the membranes. Light transmission, speed of cell adherence, cell viability (live-dead test), cell proliferation (Ki-67, BrdU staining), and cell monolayer formation were detected on membranes with the different blended ratios, and expression of some functional genes was also detected by real-time polymerase chain reaction.

RESULTS

Different blended ratios of scaffolds had different light transmittance properties. The 25:75 blended ratio membrane had the best transmittance among these scaffolds. All electrospun nanofibrous membranes showed improved speed of cell adherence when compared with the control group, especially when the P(LLA-CL) ratio increased. The 25:75 blended ratio membranes also had the highest cell proliferation. B4G12 cells could form a monolayer on all scaffolds, and most functional genes were also stably expressed on all scaffolds. Only two genes showed changes in expression.

CONCLUSION

All blended ratios of SF:P(LLA-CL) scaffolds were evaluated and showed good biocompatibility for cell adherence and monolayer formation. Among them, the 25:75 blended ratio SF:P(LLA-CL) scaffold had the best transmittance and the highest cell proliferation. These attributes further the potential application of the SF:P(LLA-CL) scaffold for corneal endothelial transplantation.

摘要

背景

近几十年来,角膜移植技术取得了显著进展,使外科医生能够用薄的层状结构替换患病的角膜内皮。一种带有角膜内皮细胞的薄的、透明的、生物相容性良好的组织工程基质目前备受关注,可用于内皮角膜移植术。静电纺丝制备纳米纤维结构能够模拟细胞外基质,对细胞培养具有有益作用。丝素蛋白(SF)具有良好的生物相容性,但机械性能较差,而聚(L-乳酸-共-ε-己内酯)(P(LLA-CL))具有良好的机械性能,但生物相容性较差。将SF与P(LLA-CL)混合可以保留这两种材料的优点并克服它们的缺点。混合静电纺丝纳米纤维膜可能适用于角膜内皮的再生。本研究的目的是制备一种适用于内皮角膜移植术的组织工程构建体。

方法

制备了五种含有不同SF:P(LLA-CL)混合比例(100:0、75:25、50:50、25:75、0:100)的支架。将人角膜内皮(B4G12)细胞系培养在这些膜上。检测了不同混合比例膜的透光率、细胞黏附速度、细胞活力(活死检测)、细胞增殖(Ki-67、BrdU染色)以及细胞单层形成情况,还通过实时聚合酶链反应检测了一些功能基因的表达。

结果

不同混合比例的支架具有不同的透光性能。在这些支架中,25:75混合比例的膜具有最佳透光率。与对照组相比,所有静电纺丝纳米纤维膜的细胞黏附速度均有所提高,尤其是当P(LLA-CL)比例增加时。25:75混合比例的膜细胞增殖也最高。B4G12细胞能够在所有支架上形成单层,并且大多数功能基因在所有支架上也稳定表达。只有两个基因的表达出现了变化。

结论

对所有SF:P(LLA-CL)支架的混合比例进行了评估,结果显示其对细胞黏附和单层形成具有良好的生物相容性。其中,25:75混合比例的SF:P(LLA-CL)支架具有最佳透光率和最高细胞增殖率。这些特性进一步推动了SF:P(LLA-CL)支架在角膜内皮移植中的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/993a/4427599/6fe4c98fec39/ijn-10-3337Fig1.jpg

相似文献

1
Electrospun nanofibrous SF/P(LLA-CL) membrane: a potential substratum for endothelial keratoplasty.
Int J Nanomedicine. 2015 May 5;10:3337-50. doi: 10.2147/IJN.S77706. eCollection 2015.
2
Fabrication of silk fibroin blended P(LLA-CL) nanofibrous scaffolds for tissue engineering.
J Biomed Mater Res A. 2010 Jun 1;93(3):984-93. doi: 10.1002/jbm.a.32504.
3
Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
Int J Nanomedicine. 2016 Apr 11;11:1483-500. doi: 10.2147/IJN.S97445. eCollection 2016.
4
Influence of post-treatment with 75% (v/v) ethanol vapor on the properties of SF/P(LLA-CL) nanofibrous scaffolds.
Int J Mol Sci. 2012;13(2):2036-2047. doi: 10.3390/ijms13022036. Epub 2012 Feb 14.
5
Fabrication and characterization of Mg/P(LLA-CL)-blended nanofiber scaffold.
J Biomater Sci Polym Ed. 2014 Jul;25(10):1013-27. doi: 10.1080/09205063.2014.918456. Epub 2014 Jun 4.
7
Biologically improved nanofibrous scaffolds for cardiac tissue engineering.
Mater Sci Eng C Mater Biol Appl. 2014 Nov;44:268-77. doi: 10.1016/j.msec.2014.08.018. Epub 2014 Aug 10.
8
Electrospun bio-composite P(LLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering.
J Biomed Mater Res B Appl Biomater. 2012 May;100(4):1093-102. doi: 10.1002/jbm.b.32676. Epub 2012 Mar 21.
9
Aligned natural-synthetic polyblend nanofibers for peripheral nerve regeneration.
Acta Biomater. 2011 Feb;7(2):634-43. doi: 10.1016/j.actbio.2010.09.011. Epub 2010 Sep 16.
10
Fabrication and characterization of vitamin B5 loaded poly (l-lactide-co-caprolactone)/silk fiber aligned electrospun nanofibers for schwann cell proliferation.
Colloids Surf B Biointerfaces. 2016 Aug 1;144:108-117. doi: 10.1016/j.colsurfb.2016.04.013. Epub 2016 Apr 7.

引用本文的文献

1
Advancements in Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering.
Polymers (Basel). 2024 Oct 12;16(20):2882. doi: 10.3390/polym16202882.
4
Biomaterials used for tissue engineering of barrier-forming cell monolayers in the eye.
Front Bioeng Biotechnol. 2023 Sep 27;11:1269385. doi: 10.3389/fbioe.2023.1269385. eCollection 2023.
5
Bioprinted Membranes for Corneal Tissue Engineering: A Review.
Pharmaceutics. 2022 Dec 14;14(12):2797. doi: 10.3390/pharmaceutics14122797.
6
Design of functional biomaterials as substrates for corneal endothelium tissue engineering.
Regen Biomater. 2022 Jul 29;9:rbac052. doi: 10.1093/rb/rbac052. eCollection 2022.
8
Membranes for the life sciences and their future roles in medicine.
Chin J Chem Eng. 2022 Sep;49:1-20. doi: 10.1016/j.cjche.2022.04.027. Epub 2022 Jun 15.
9
A novel application of electrospun silk fibroin/poly(l-lactic acid--ε-caprolactone) scaffolds for conjunctiva reconstruction.
RSC Adv. 2018 May 21;8(33):18372-18380. doi: 10.1039/c7ra13551c. eCollection 2018 May 17.
10
Natural protein-based electrospun nanofibers for advanced healthcare applications: progress and challenges.
3 Biotech. 2022 Apr;12(4):92. doi: 10.1007/s13205-022-03152-z. Epub 2022 Mar 14.

本文引用的文献

1
Charge-Tunable Silk-Tropoelastin Protein Alloys That Control Neuron Cell Responses.
Adv Funct Mater. 2013 Aug 19;23(31):3875-3884. doi: 10.1002/adfm.201202685.
2
Fabrication of cell penetration enhanced poly (l-lactic acid-co-ɛ-caprolactone)/silk vascular scaffolds utilizing air-impedance electrospinning.
Colloids Surf B Biointerfaces. 2014 Aug 1;120:47-54. doi: 10.1016/j.colsurfb.2014.04.011. Epub 2014 May 22.
3
Fabrication and characterization of Mg/P(LLA-CL)-blended nanofiber scaffold.
J Biomater Sci Polym Ed. 2014 Jul;25(10):1013-27. doi: 10.1080/09205063.2014.918456. Epub 2014 Jun 4.
4
Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography.
Biomaterials. 2014 Mar;35(9):2837-50. doi: 10.1016/j.biomaterials.2013.12.069. Epub 2014 Jan 15.
5
Use of a silk fibroin-chitosan scaffold to construct a tissue-engineered corneal stroma.
Cells Tissues Organs. 2013;198(3):190-7. doi: 10.1159/000355944. Epub 2013 Nov 12.
7
Fabrication of a corneal-limbal tissue substitute using silk fibroin.
Methods Mol Biol. 2013;1014:165-78. doi: 10.1007/978-1-62703-432-6_11.
8
Chitosan-functionalized silk fibroin 3D scaffold for keratocyte culture.
J Mol Histol. 2013 Oct;44(5):609-18. doi: 10.1007/s10735-013-9508-5. Epub 2013 May 1.
9
Silk fibroin as a biomaterial substrate for corneal epithelial cell sheet generation.
Invest Ophthalmol Vis Sci. 2012 Jun 26;53(7):4130-8. doi: 10.1167/iovs.12-9876.
10
Effects of serum-free storage on morphology, phenotype, and viability of ex vivo cultured human conjunctival epithelium.
Exp Eye Res. 2012 Jan;94(1):109-16. doi: 10.1016/j.exer.2011.11.015. Epub 2011 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验