Suppr超能文献

通过分层建模对功能基因组注释和测序数据进行综合分析,以识别罕见的因果变异。

Integrative analysis of functional genomic annotations and sequencing data to identify rare causal variants via hierarchical modeling.

作者信息

Capanu Marinela, Ionita-Laza Iuliana

机构信息

Memorial Sloan-Kettering Cancer Center New York, NY, USA.

Department of Biostatistics, Columbia University New York, NY, USA.

出版信息

Front Genet. 2015 May 8;6:17. doi: 10.3389/fgene.2015.00176. eCollection 2015.

Abstract

Identifying the small number of rare causal variants contributing to disease has been a major focus of investigation in recent years, but represents a formidable statistical challenge due to the rare frequencies with which these variants are observed. In this commentary we draw attention to a formal statistical framework, namely hierarchical modeling, to combine functional genomic annotations with sequencing data with the objective of enhancing our ability to identify rare causal variants. Using simulations we show that in all configurations studied, the hierarchical modeling approach has superior discriminatory ability compared to a recently proposed aggregate measure of deleteriousness, the Combined Annotation-Dependent Depletion (CADD) score, supporting our premise that aggregate functional genomic measures can more accurately identify causal variants when used in conjunction with sequencing data through a hierarchical modeling approach.

摘要

识别导致疾病的少数罕见因果变异一直是近年来研究的主要焦点,但由于这些变异出现的频率很低,这是一个巨大的统计挑战。在本评论中,我们提请注意一个正式的统计框架,即层次模型,将功能基因组注释与测序数据相结合,目的是增强我们识别罕见因果变异的能力。通过模拟我们表明,在所有研究的配置中,与最近提出的一种有害性综合度量方法——联合注释依赖损耗(CADD)评分相比,层次模型方法具有更强的鉴别能力,这支持了我们的前提,即通过层次模型方法将综合功能基因组度量与测序数据结合使用时,可以更准确地识别因果变异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5524/4424902/d4db5043555d/fgene-06-00176-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验