Lin Lin, Finak Greg, Ushey Kevin, Seshadri Chetan, Hawn Thomas R, Frahm Nicole, Scriba Thomas J, Mahomed Hassan, Hanekom Willem, Bart Pierre-Alexandre, Pantaleo Giuseppe, Tomaras Georgia D, Rerks-Ngarm Supachai, Kaewkungwal Jaranit, Nitayaphan Sorachai, Pitisuttithum Punnee, Michael Nelson L, Kim Jerome H, Robb Merlin L, O'Connell Robert J, Karasavvas Nicos, Gilbert Peter, C De Rosa Stephen, McElrath M Juliana, Gottardo Raphael
Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA.
Nat Biotechnol. 2015 Jun;33(6):610-6. doi: 10.1038/nbt.3187. Epub 2015 May 25.
Advances in flow cytometry and other single-cell technologies have enabled high-dimensional, high-throughput measurements of individual cells as well as the interrogation of cell population heterogeneity. However, in many instances, computational tools to analyze the wealth of data generated by these technologies are lacking. Here, we present a computational framework for unbiased combinatorial polyfunctionality analysis of antigen-specific T-cell subsets (COMPASS). COMPASS uses a Bayesian hierarchical framework to model all observed cell subsets and select those most likely to have antigen-specific responses. Cell-subset responses are quantified by posterior probabilities, and human subject-level responses are quantified by two summary statistics that describe the quality of an individual's polyfunctional response and can be correlated directly with clinical outcome. Using three clinical data sets of cytokine production, we demonstrate how COMPASS improves characterization of antigen-specific T cells and reveals cellular 'correlates of protection/immunity' in the RV144 HIV vaccine efficacy trial that are missed by other methods. COMPASS is available as open-source software.
流式细胞术和其他单细胞技术的进展使得能够对单个细胞进行高维、高通量测量,并对细胞群体异质性进行研究。然而,在许多情况下,缺乏用于分析这些技术产生的大量数据的计算工具。在此,我们提出了一个用于对抗原特异性T细胞亚群进行无偏组合多功能分析的计算框架(COMPASS)。COMPASS使用贝叶斯分层框架对所有观察到的细胞亚群进行建模,并选择那些最有可能具有抗原特异性反应的亚群。细胞亚群反应通过后验概率进行量化,而人类受试者水平的反应则通过两个描述个体多功能反应质量的汇总统计量进行量化,这两个统计量可直接与临床结果相关联。使用三个细胞因子产生的临床数据集,我们展示了COMPASS如何改善对抗原特异性T细胞的表征,并揭示了RV144 HIV疫苗疗效试验中其他方法遗漏的细胞“保护/免疫相关因素”。COMPASS作为开源软件提供。
Nat Biotechnol. 2015-6
AIDS Res Hum Retroviruses. 1992-8
Signal Transduct Target Ther. 2025-7-2
J Clin Invest. 2014-11
Clin Microbiol Rev. 2014-1
Biostatistics. 2013-7-24
Nat Methods. 2013-2-10
PLoS One. 2012-7-30
N Engl J Med. 2012-4-5
Int J Tuberc Lung Dis. 2011-3