Suppr超能文献

一种用于人类健康效应剂量反应评估的统一概率框架。

A Unified Probabilistic Framework for Dose-Response Assessment of Human Health Effects.

作者信息

Chiu Weihsueh A, Slob Wout

机构信息

National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA.

出版信息

Environ Health Perspect. 2015 Dec;123(12):1241-54. doi: 10.1289/ehp.1409385. Epub 2015 May 22.

Abstract

BACKGROUND

When chemical health hazards have been identified, probabilistic dose-response assessment ("hazard characterization") quantifies uncertainty and/or variability in toxicity as a function of human exposure. Existing probabilistic approaches differ for different types of endpoints or modes-of-action, lacking a unifying framework.

OBJECTIVES

We developed a unified framework for probabilistic dose-response assessment.

METHODS

We established a framework based on four principles: a) individual and population dose responses are distinct; b) dose-response relationships for all (including quantal) endpoints can be recast as relating to an underlying continuous measure of response at the individual level; c) for effects relevant to humans, "effect metrics" can be specified to define "toxicologically equivalent" sizes for this underlying individual response; and d) dose-response assessment requires making adjustments and accounting for uncertainty and variability. We then derived a step-by-step probabilistic approach for dose-response assessment of animal toxicology data similar to how nonprobabilistic reference doses are derived, illustrating the approach with example non-cancer and cancer datasets.

RESULTS

Probabilistically derived exposure limits are based on estimating a "target human dose" (HDMI), which requires risk management-informed choices for the magnitude (M) of individual effect being protected against, the remaining incidence (I) of individuals with effects ≥ M in the population, and the percent confidence. In the example datasets, probabilistically derived 90% confidence intervals for HDMI values span a 40- to 60-fold range, where I = 1% of the population experiences ≥ M = 1%-10% effect sizes.

CONCLUSIONS

Although some implementation challenges remain, this unified probabilistic framework can provide substantially more complete and transparent characterization of chemical hazards and support better-informed risk management decisions.

摘要

背景

当已识别出化学健康危害时,概率剂量反应评估(“危害特征描述”)会将毒性方面的不确定性和/或变异性量化为人类暴露的函数。现有的概率方法因终点类型或作用模式的不同而有所差异,缺乏一个统一的框架。

目标

我们开发了一个用于概率剂量反应评估的统一框架。

方法

我们基于四项原则建立了一个框架:a)个体剂量反应和群体剂量反应是不同的;b)所有(包括定量的)终点的剂量反应关系都可以重新表述为与个体水平上潜在的连续反应测量相关;c)对于与人类相关的效应,可以指定“效应指标”来定义这种潜在个体反应的“毒理学等效”大小;d)剂量反应评估需要进行调整并考虑不确定性和变异性。然后,我们推导了一种用于动物毒理学数据剂量反应评估的逐步概率方法,类似于推导非概率参考剂量的方式,并通过非癌症和癌症数据集示例说明了该方法。

结果

概率推导的暴露限值基于对“目标人体剂量”(HDMI)的估计,这需要基于风险管理做出选择,以确定要预防的个体效应大小(M)、群体中效应≥M的个体的剩余发生率(I)以及置信百分比。在示例数据集中,HDMI值的概率推导90%置信区间跨度为40至60倍,其中I = 1%的人群经历≥M = 1%-10%的效应大小。

结论

尽管仍存在一些实施挑战,但这个统一的概率框架可以提供更完整、更透明的化学危害特征描述,并支持做出更明智的风险管理决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1d5/4671238/7e3ab8372c9a/ehp.1409385.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验