Lu En-Hsuan, Ford Lucie C, Rusyn Ivan, Chiu Weihsueh A
Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA.
Risk Anal. 2025 Feb;45(2):457-472. doi: 10.1111/risa.17451. Epub 2024 Aug 16.
There are two primary sources of uncertainty in the interpretability of toxicity values, like the reference dose (RfD): estimates of the point of departure (POD) and the absence of chemical-specific human variability data. We hypothesize two solutions-employing Bayesian benchmark dose (BBMD) modeling to refine POD determination and combining high-throughput toxicokinetic modeling with population-based toxicodynamic in vitro data to characterize chemical-specific variability. These hypotheses were tested by deriving refined probabilistic estimates for human doses corresponding to a specific effect size (M) in the Ith population percentile (HD ) across 19 Superfund priority chemicals. HD values were further converted to biomonitoring equivalents in blood and urine for benchmarking against human data. Compared to deterministic default-based RfDs, HD values were generally more protective, particularly influenced by chemical-specific data on interindividual variability. Incorporating chemical-specific in vitro data improved precision in probabilistic RfDs, with a median 1.4-fold reduction in uncertainty variance. Comparison with US Environmental Protection Agency's Exposure Forecasting exposure predictions and biomonitoring data from the National Health and Nutrition Examination Survey identified chemicals with margins of exposure nearing or below one. Overall, to mitigate uncertainty in regulatory toxicity values and guide chemical risk management, BBMD modeling and chemical-specific population-based human in vitro data are essential.
在毒性值(如参考剂量,RfD)的可解释性方面存在两个主要的不确定性来源:起始点(POD)的估计以及缺乏化学物质特异性的人类变异性数据。我们提出了两种解决方案——采用贝叶斯基准剂量(BBMD)建模来优化POD的确定,并将高通量毒代动力学建模与基于群体的体外毒代动力学数据相结合,以表征化学物质特异性变异性。通过推导针对19种超级基金优先化学品在第I人群百分位数(HD)中对应特定效应大小(M)的人类剂量的精确概率估计值,对这些假设进行了检验。HD值进一步转换为血液和尿液中的生物监测当量,以便与人类数据进行对比。与基于确定性默认值的RfD相比,HD值通常更具保护作用,尤其受到个体间变异性的化学物质特异性数据的影响。纳入化学物质特异性的体外数据提高了概率性RfD的精度,不确定性方差中位数降低了1.4倍。与美国环境保护局的暴露预测以及国家健康与营养检查调查的生物监测数据进行比较,识别出暴露边际接近或低于1的化学物质。总体而言,为了降低监管毒性值的不确定性并指导化学物质风险管理,BBMD建模和基于化学物质特异性群体的人类体外数据至关重要。