Uitdehaag Joost C M, de Roos Jeroen A D M, van Doornmalen Antoon M, Prinsen Martine B W, Spijkers-Hagelstein Jill A P, de Vetter Judith R F, de Man Jos, Buijsman Rogier C, Zaman Guido J R
Netherlands Translational Research Center B.V., Oss, The Netherlands.
PLoS One. 2015 May 27;10(5):e0125021. doi: 10.1371/journal.pone.0125021. eCollection 2015.
The aim of combination drug treatment in cancer therapy is to improve response rate and to decrease the probability of the development of drug resistance. Preferably, drug combinations are synergistic rather than additive, and, ideally, drug combinations work synergistically only in cancer cells and not in non-malignant cells. We have developed a workflow to identify such targeted synergies, and applied this approach to selectively inhibit the proliferation of cell lines with mutations in genes that are difficult to modulate with small molecules. The approach is based on curve shift analysis, which we demonstrate is a more robust method of determining synergy than combination matrix screening with Bliss-scoring. We show that the MEK inhibitor trametinib is more synergistic in combination with the BRAF inhibitor dabrafenib than with vemurafenib, another BRAF inhibitor. In addition, we show that the combination of MEK and BRAF inhibitors is synergistic in BRAF-mutant melanoma cells, and additive or antagonistic in, respectively, BRAF-wild type melanoma cells and non-malignant fibroblasts. This combination exemplifies that synergistic action of drugs can depend on cancer genotype. Next, we used curve shift analysis to identify new drug combinations that specifically inhibit cancer cell proliferation driven by difficult-to-drug cancer genes. Combination studies were performed with compounds that as single agents showed preference for inhibition of cancer cells with mutations in either the CTNNB1 gene (coding for β-catenin), KRAS, or cancer cells expressing increased copy numbers of MYC. We demonstrate that the Wnt-pathway inhibitor ICG-001 and trametinib acted synergistically in Wnt-pathway-mutant cell lines. The ERBB2 inhibitor TAK-165 was synergistic with trametinib in KRAS-mutant cell lines. The EGFR/ERBB2 inhibitor neratinib acted synergistically with the spindle poison docetaxel and with the Aurora kinase inhibitor GSK-1070916 in cell lines with MYC amplification. Our approach can therefore efficiently discover novel drug combinations that selectively target cancer genes.
癌症治疗中联合药物治疗的目的是提高缓解率并降低耐药性产生的可能性。理想情况下,药物组合具有协同作用而非相加作用,并且,理想的是,药物组合仅在癌细胞中协同发挥作用,而不在非恶性细胞中起作用。我们开发了一种工作流程来识别这种靶向协同作用,并将此方法应用于选择性抑制那些具有难以用小分子调节的基因突变的细胞系的增殖。该方法基于曲线位移分析,我们证明这是一种比使用布利斯评分的组合矩阵筛选更可靠的确定协同作用的方法。我们表明,MEK抑制剂曲美替尼与BRAF抑制剂达拉非尼联合使用比与另一种BRAF抑制剂维莫非尼联合使用具有更强的协同作用。此外,我们表明MEK和BRAF抑制剂的组合在BRAF突变的黑色素瘤细胞中具有协同作用,而在BRAF野生型黑色素瘤细胞和非恶性成纤维细胞中分别具有相加或拮抗作用。这种组合例证了药物的协同作用可能取决于癌症基因型。接下来,我们使用曲线位移分析来识别新的药物组合,这些组合可特异性抑制由难以靶向治疗的癌症基因驱动的癌细胞增殖。我们用作为单一药物时对具有CTNNB1基因(编码β-连环蛋白)、KRAS突变的癌细胞或表达MYC拷贝数增加的癌细胞表现出抑制偏好的化合物进行了联合研究。我们证明Wnt信号通路抑制剂ICG-001和曲美替尼在Wnt信号通路突变的细胞系中具有协同作用。ERBB2抑制剂TAK-165在KRAS突变的细胞系中与曲美替尼具有协同作用。在具有MYC扩增的细胞系中,EGFR/ERBB2抑制剂来那替尼与纺锤体毒素多西他赛以及极光激酶抑制剂GSK-1070916具有协同作用。因此,我们的方法可以有效地发现选择性靶向癌症基因的新型药物组合。