Suppr超能文献

小分子的 AMOEBA 极化力场自动化:Poltype 2。

Automation of AMOEBA polarizable force field for small molecules: Poltype 2.

机构信息

Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA.

出版信息

J Comput Chem. 2022 Sep 5;43(23):1530-1542. doi: 10.1002/jcc.26954. Epub 2022 Jul 1.

Abstract

A next-generation protocol (Poltype 2) has been developed which automatically generates AMOEBA polarizable force field parameters for small molecules. Both features and computational efficiency have been drastically improved. Notable advances include improved database transferability using SMILES, robust torsion fitting, non-aromatic ring torsion parameterization, coupled torsion-torsion parameterization, Van der Waals parameter refinement using ab initio dimer data and an intelligent fragmentation scheme that produces parameters with dramatically reduced ab initio computational cost. Additional improvements include better local frame assignment for atomic multipoles, automated formal charge assignment, Zwitterion detection, smart memory resource defaults, parallelized fragment job submission, incorporation of Psi4 quantum package, ab initio error handling, ionization state enumeration, hydration free energy prediction and binding free energy prediction. For validation, we have applied Poltype 2 to ~1000 FDA approved drug molecules from DrugBank. The ab initio molecular dipole moments and electrostatic potential values were compared with Poltype 2 derived AMOEBA counterparts. Parameters were further substantiated by calculating hydration free energy (HFE) on 40 small organic molecules and were compared with experimental data, resulting in an RMSE error of 0.59 kcal/mol. The torsion database has expanded to include 3543 fragments derived from FDA approved drugs. Poltype 2 provides a convenient utility for applications including binding free energy prediction for computational drug discovery. Further improvement will focus on automated parameter refinement by experimental liquid properties, expansion of the Van der Waals parameter database and automated parametrization of modified bio-fragments such as amino and nucleic acids.

摘要

一种下一代协议(Poltype 2)已经被开发出来,可以自动为小分子生成 AMOEBA 极化力场参数。其功能和计算效率都有了显著提高。显著的进展包括使用 SMILES 提高数据库可转移性、稳健的扭转拟合、非芳香环扭转参数化、耦合扭转-扭转参数化、使用从头算二聚体数据改进范德华参数细化以及产生参数的智能碎片方案,大大降低了从头算计算成本。其他改进包括更好的原子多极子局部框架分配、自动形式电荷分配、两性离子检测、智能内存资源默认值、并行碎片作业提交、Psi4 量子包的纳入、从头算错误处理、离子态枚举、水合自由能预测和结合自由能预测。为了验证,我们将 Poltype 2 应用于来自 DrugBank 的约 1000 种 FDA 批准的药物分子。将从头算分子偶极矩和静电势能值与 Poltype 2 衍生的 AMOEBA 对应物进行比较。通过计算 40 个小分子的水合自由能(HFE)进一步证实了参数,并与实验数据进行了比较,得到的 RMSE 误差为 0.59 kcal/mol。扭转数据库已扩展到包括 3543 个源自 FDA 批准药物的片段。Poltype 2 为包括计算药物发现中的结合自由能预测在内的应用提供了便利的实用程序。进一步的改进将集中在通过实验液体性质自动参数细化、扩展范德华参数数据库以及自动参数化修饰的生物片段(如氨基酸和核酸)上。

相似文献

7
Multipole electrostatics in hydration free energy calculations.无溶剂化自由能计算中的多极静电作用。
J Comput Chem. 2011 Apr 15;32(5):967-77. doi: 10.1002/jcc.21681. Epub 2010 Oct 5.
8
Efficient optimization of van der Waals parameters from bulk properties.从体性质高效优化范德华参数。
J Comput Chem. 2013 Oct 15;34(27):2313-9. doi: 10.1002/jcc.23376. Epub 2013 Jul 5.

引用本文的文献

1
Physics-Based Solubility Prediction for Organic Molecules.基于物理的有机分子溶解度预测
Chem Rev. 2025 Aug 13;125(15):7057-7098. doi: 10.1021/acs.chemrev.4c00855. Epub 2025 Jul 29.

本文引用的文献

1
Atomic Polarizabilities for Interactive Dipole Induction Models.相互作用偶极感应模型的原子极化率。
J Chem Inf Model. 2022 Jan 10;62(1):79-87. doi: 10.1021/acs.jcim.1c01307. Epub 2021 Dec 28.
3
Implicit Solvents for the Polarizable Atomic Multipole AMOEBA Force Field.各向异性极化原子多极 AMOEBA 力场的内禀溶剂模型。
J Chem Theory Comput. 2021 Apr 13;17(4):2323-2341. doi: 10.1021/acs.jctc.0c01286. Epub 2021 Mar 26.
5
Driving torsion scans with wavefront propagation.利用波前传播进行扭转扫描。
J Chem Phys. 2020 Jun 28;152(24):244116. doi: 10.1063/5.0009232.
7
AMOEBA+ Classical Potential for Modeling Molecular Interactions.用于分子相互作用建模的AMOEBA+经典势
J Chem Theory Comput. 2019 Jul 9;15(7):4122-4139. doi: 10.1021/acs.jctc.9b00261. Epub 2019 Jun 11.
8
OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules.OPLS3e:扩展适用于类药物小分子的力场覆盖范围。
J Chem Theory Comput. 2019 Mar 12;15(3):1863-1874. doi: 10.1021/acs.jctc.8b01026. Epub 2019 Mar 4.
10
Many-body effect determines the selectivity for Ca and Mg in proteins.多体效应决定了蛋白质对钙和镁的选择性。
Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):E7495-E7501. doi: 10.1073/pnas.1805049115. Epub 2018 Jul 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验