Mils Valérie, Bosch Stéphanie, Roy Julie, Bel-Vialar Sophie, Belenguer Pascale, Pituello Fabienne, Miquel Marie-Christine
Universités de Toulouse, Centre de Biologie du Développement, CNRS UMR5547, Université Paul Sabatier, Toulouse, France.
Universités de Toulouse, Centre de Biologie du Développement, CNRS UMR5547, Université Paul Sabatier, Toulouse, France; UPMC Université Pierre et Marie Curie, Sorbonne Universités, Paris, France.
PLoS One. 2015 May 28;10(5):e0128130. doi: 10.1371/journal.pone.0128130. eCollection 2015.
Mitochondria, long known as the cell powerhouses, also regulate redox signaling and arbitrate cell survival. The organelles are now appreciated to exert additional critical roles in cell state transition from a pluripotent to a differentiated state through balancing glycolytic and respiratory metabolism. These metabolic adaptations were recently shown to be concomitant with mitochondrial morphology changes and are thus possibly regulated by contingencies of mitochondrial dynamics. In this context, we examined, for the first time, mitochondrial network plasticity during the transition from proliferating neural progenitors to post-mitotic differentiating neurons. We found that mitochondria underwent morphological reshaping in the developing neural tube of chick and mouse embryos. In the proliferating population, mitochondria in the mitotic cells lying at the apical side were very small and round, while they appeared thick and short in interphase cells. In differentiating neurons, mitochondria were reorganized into a thin, dense network. This reshaping of the mitochondrial network was not specific of a subtype of progenitors or neurons, suggesting that this is a general event accompanying neurogenesis in the spinal cord. Our data shed new light on the various changes occurring in the mitochondrial network during neurogenesis and suggest that mitochondrial dynamics could play a role in the neurogenic process.
线粒体长期以来被认为是细胞的动力源,它还调节氧化还原信号并决定细胞的存活。现在人们认识到,这些细胞器在细胞从多能状态转变为分化状态的过程中,通过平衡糖酵解和呼吸代谢发挥着额外的关键作用。最近的研究表明,这些代谢适应与线粒体形态变化同时发生,因此可能受线粒体动力学突发事件的调控。在此背景下,我们首次研究了从增殖的神经祖细胞向后有丝分裂分化神经元转变过程中的线粒体网络可塑性。我们发现,在鸡和小鼠胚胎发育中的神经管内,线粒体发生了形态重塑。在增殖群体中,位于顶端的有丝分裂细胞中的线粒体非常小且呈圆形,而在间期细胞中则显得粗短。在分化的神经元中,线粒体重新组织成一个细而密集的网络。线粒体网络的这种重塑并非祖细胞或神经元的特定亚型所特有,这表明这是脊髓神经发生过程中伴随的普遍现象。我们的数据为神经发生过程中线粒体网络发生的各种变化提供了新的线索,并表明线粒体动力学可能在神经发生过程中发挥作用。