Štěpka Karel, Matula Pavel, Matula Petr, Wörz Stefan, Rohr Karl, Kozubek Michal
Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic.
IPMB and BIOQUANT, Department of Bioinformatics and Functional Genomics, and DKFZ, University of Heidelberg, Heidelberg, Germany.
Cytometry A. 2015 Aug;87(8):759-72. doi: 10.1002/cyto.a.22692. Epub 2015 May 28.
Reliable 3D detection of diffraction-limited spots in fluorescence microscopy images is an important task in subcellular observation. Generally, fluorescence microscopy images are heavily degraded by noise and non-specifically stained background, making reliable detection a challenging task. In this work, we have studied the performance and parameter sensitivity of eight recent methods for 3D spot detection. The study is based on both 3D synthetic image data and 3D real confocal microscopy images. The synthetic images were generated using a simulator modeling the complete imaging setup, including the optical path as well as the image acquisition process. We studied the detection performance and parameter sensitivity under different noise levels and under the influence of uneven background signal. To evaluate the parameter sensitivity, we propose a novel measure based on the gradient magnitude of the F1 score. We measured the success rate of the individual methods for different types of the image data and found that the type of image degradation is an important factor. Using the F1 score and the newly proposed sensitivity measure, we found that the parameter sensitivity is not necessarily proportional to the success rate of a method. This also provided an explanation why the best performing method for synthetic data was outperformed by other methods when applied to the real microscopy images. On the basis of the results obtained, we conclude with the recommendation of the HDome method for data with relatively low variations in quality, or the Sorokin method for image sets in which the quality varies more. We also provide alternative recommendations for high-quality images, and for situations in which detailed parameter tuning might be deemed expensive.
在荧光显微镜图像中对衍射极限光斑进行可靠的三维检测是亚细胞观察中的一项重要任务。一般来说,荧光显微镜图像会因噪声和非特异性染色背景而严重退化,这使得可靠检测成为一项具有挑战性的任务。在这项工作中,我们研究了最近的八种三维光斑检测方法的性能和参数敏感性。该研究基于三维合成图像数据和三维真实共聚焦显微镜图像。合成图像是使用一个模拟器生成的,该模拟器对包括光路以及图像采集过程在内的完整成像设置进行建模。我们研究了在不同噪声水平以及不均匀背景信号影响下的检测性能和参数敏感性。为了评估参数敏感性,我们提出了一种基于F1分数梯度幅度的新度量。我们测量了不同类型图像数据下各个方法的成功率,发现图像退化类型是一个重要因素。使用F1分数和新提出的敏感性度量,我们发现参数敏感性不一定与方法的成功率成正比。这也解释了为什么应用于真实显微镜图像时,合成数据中表现最佳的方法会被其他方法超越。基于所获得的结果,我们得出结论,对于质量变化相对较小的数据推荐使用HDome方法,对于质量变化较大的图像集推荐使用Sorokin方法。我们还为高质量图像以及可能认为详细参数调整成本过高的情况提供了替代建议。