Suppr超能文献

神经元生长锥中流动的肌动蛋白与固定的N-钙黏蛋白/连环蛋白复合物之间的双层耦合。

Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones.

作者信息

Garcia Mikael, Leduc Cécile, Lagardère Matthieu, Argento Amélie, Sibarita Jean-Baptiste, Thoumine Olivier

机构信息

Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, 33077 Bordeaux, France; CYTOO SA, Minatec, 38040 Grenoble, France;

Cell Polarity, Migration, and Cancer Unit, CNRS, Unité de Recherche Associée 2582, Institut Pasteur, 75724 Paris Cedex 15, France.

出版信息

Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):6997-7002. doi: 10.1073/pnas.1423455112. Epub 2015 May 18.

Abstract

Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration.

摘要

神经元生长锥通过将基于肌动蛋白的运动性与底物黏附动态连接来向前移动,但在单个分子水平上的机制仍不清楚。我们在N-钙黏蛋白包被的微图案化底物上培养原代神经元,并使用单粒子追踪结合光激活定位显微镜(sptPALM)对生长锥腹侧表面的黏附蛋白和细胞骨架蛋白进行成像。我们证明了流动的肌动蛋白丝与固定的N-钙黏蛋白/连环蛋白复合物在第二个时间尺度上的瞬时相互作用,这转化为肌动蛋白逆行流的局部减少。通过表达一种显性负性N-钙黏蛋白构建体来竞争肌动蛋白与内源性N-钙黏蛋白之间的偶联,从而挽救了微图案上正常的肌动蛋白流。光漂白后荧光恢复(FRAP)实验证实了肌动蛋白和N-钙黏蛋白的不同动力学,并进一步揭示了20%的肌动蛋白群体局限于N-钙黏蛋白微图案处,导致局部肌动蛋白积累。具有相关动力学参数的计算机模拟很好地模拟了N-钙黏蛋白和肌动蛋白的周转,验证了这一机制。运动性肌动蛋白网络与空间受限的黏附复合物之间这种短期和长期相互作用的组合代表了一种双层离合器机制,可能维持动态环境感知并提供生长锥迁移所需的力。

相似文献

8
L1, N-cadherin, and laminin induce distinct distribution patterns of cytoskeletal elements in growth cones.
Cell Motil Cytoskeleton. 1996;35(1):1-23. doi: 10.1002/(SICI)1097-0169(1996)35:1<1::AID-CM1>3.0.CO;2-F.

引用本文的文献

5
Multi-Dimensional Spectral Single Molecule Localization Microscopy.多维光谱单分子定位显微镜
Front Bioinform. 2022 Mar 4;2:813494. doi: 10.3389/fbinf.2022.813494. eCollection 2022.
10
Forces to Drive Neuronal Migration Steps.驱动神经元迁移步骤的力量。
Front Cell Dev Biol. 2020 Sep 1;8:863. doi: 10.3389/fcell.2020.00863. eCollection 2020.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验