Suppr超能文献

空间结构肿瘤博弈论动力学中的边缘效应。

Edge effects in game-theoretic dynamics of spatially structured tumours.

作者信息

Kaznatcheev Artem, Scott Jacob G, Basanta David

机构信息

School of Computer Science and Department of Psychology, McGill University, Montreal, Quebec, Canada Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA

Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK.

出版信息

J R Soc Interface. 2015 Jul 6;12(108):20150154. doi: 10.1098/rsif.2015.0154.

Abstract

Cancer dynamics are an evolutionary game between cellular phenotypes. A typical assumption in this modelling paradigm is that the probability of a given phenotypic strategy interacting with another depends exclusively on the abundance of those strategies without regard for local neighbourhood structure. We address this limitation by using the Ohtsuki-Nowak transform to introduce spatial structure to the go versus grow game. We show that spatial structure can promote the invasive (go) strategy. By considering the change in neighbourhood size at a static boundary--such as a blood vessel, organ capsule or basement membrane--we show an edge effect that allows a tumour without invasive phenotypes in the bulk to have a polyclonal boundary with invasive cells. We present an example of this promotion of invasive (epithelial-mesenchymal transition-positive) cells in a metastatic colony of prostate adenocarcinoma in bone marrow. Our results caution that pathologic analyses that do not distinguish between cells in the bulk and cells at a static edge of a tumour can underestimate the number of invasive cells. Although we concentrate on applications in mathematical oncology, we expect our approach to extend to other evolutionary game models where interaction neighbourhoods change at fixed system boundaries.

摘要

癌症动态是细胞表型之间的一种进化博弈。这种建模范式中的一个典型假设是,给定表型策略与另一个策略相互作用的概率完全取决于这些策略的丰度,而不考虑局部邻域结构。我们通过使用大月 - 诺瓦克变换为“去(go)与生长”博弈引入空间结构来解决这一局限性。我们表明空间结构可以促进侵袭性(去)策略。通过考虑在静态边界(如血管、器官被膜或基底膜)处邻域大小的变化,我们展示了一种边缘效应,即允许在主体中没有侵袭性表型的肿瘤具有带有侵袭性细胞的多克隆边界。我们给出了在骨髓中前列腺腺癌转移灶中侵袭性(上皮 - 间质转化阳性)细胞这种促进作用的一个例子。我们的结果警示,不区分肿瘤主体中的细胞和肿瘤静态边缘处细胞的病理分析可能会低估侵袭性细胞的数量。尽管我们专注于数学肿瘤学中的应用,但我们期望我们的方法能够扩展到其他进化博弈模型,其中相互作用邻域在固定系统边界处发生变化。

相似文献

5
Evolutionary dynamics of a smoothed war of attrition game.一种平滑消耗战博弈的进化动力学
J Theor Biol. 2016 May 7;396:25-41. doi: 10.1016/j.jtbi.2016.02.014. Epub 2016 Feb 20.
6
Structure coefficients and strategy selection in multiplayer games.多人游戏中的结构系数与策略选择。
J Math Biol. 2016 Jan;72(1-2):203-38. doi: 10.1007/s00285-015-0882-3. Epub 2015 Apr 5.
7
The effect of dispersal and neighbourhood in games of cooperation.合作博弈中扩散与邻域的影响
J Theor Biol. 2008 Jul 21;253(2):221-7. doi: 10.1016/j.jtbi.2008.02.037. Epub 2008 Mar 6.

引用本文的文献

2
Modeling cancer's ecological and evolutionary dynamics.肿瘤的生态和进化动力学建模。
Med Oncol. 2023 Feb 28;40(4):109. doi: 10.1007/s12032-023-01968-0.
8
9
Evidence for hypoxia increasing the tempo of evolution in glioblastoma.缺氧证据表明增加胶质母细胞瘤进化速度。
Br J Cancer. 2020 Nov;123(10):1562-1569. doi: 10.1038/s41416-020-1021-5. Epub 2020 Aug 27.
10
The 2019 mathematical oncology roadmap.2019 年数学肿瘤学路线图。
Phys Biol. 2019 Jun 19;16(4):041005. doi: 10.1088/1478-3975/ab1a09.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验