Suppr超能文献

mtDNA 变化和线粒体功能障碍如何影响癌症和癌症治疗?挑战、机遇和模型。

How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models.

机构信息

Department of Radiation Oncology (MaastRO) Lab, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Universiteitssingel 50/23, PO Box 616, 6200 MD Maastricht, The Netherlands.

Department of Radiation Oncology (MaastRO) Lab, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Universiteitssingel 50/23, PO Box 616, 6200 MD Maastricht, The Netherlands; Department of Clinical Genomics, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Universiteitssingel 50/23, PO Box 616, 6200 MD Maastricht, The Netherlands.

出版信息

Mutat Res Rev Mutat Res. 2015 Apr-Jun;764:16-30. doi: 10.1016/j.mrrev.2015.01.001. Epub 2015 Jan 20.

Abstract

Several mutations in nuclear genes encoding for mitochondrial components have been associated with an increased cancer risk or are even causative, e.g. succinate dehydrogenase (SDHB, SDHC and SDHD genes) and iso-citrate dehydrogenase (IDH1 and IDH2 genes). Recently, studies have suggested an eminent role for mitochondrial DNA (mtDNA) mutations in the development of a wide variety of cancers. Various studies associated mtDNA abnormalities, including mutations, deletions, inversions and copy number alterations, with mitochondrial dysfunction. This might, explain the hampered cellular bioenergetics in many cancer cell types. Germline (e.g. m.10398A>G; m.6253T>C) and somatic mtDNA mutations as well as differences in mtDNA copy number seem to be associated with cancer risk. It seems that mtDNA can contribute as driver or as complementary gene mutation according to the multiple-hit model. This can enhance the mutagenic/clonogenic potential of the cell as observed for m.8993T>G or influences the metastatic potential in later stages of cancer progression. Alternatively, other mtDNA variations will be innocent passenger mutations in a tumor and therefore do not contribute to the tumorigenic or metastatic potential. In this review, we discuss how reported mtDNA variations interfere with cancer treatment and what implications this has on current successful pharmaceutical interventions. Mutations in MT-ND4 and mtDNA depletion have been reported to be involved in cisplatin resistance. Pharmaceutical impairment of OXPHOS by metformin can increase the efficiency of radiotherapy. To study mitochondrial dysfunction in cancer, different cellular models (like ρ(0) cells or cybrids), in vivo murine models (xenografts and specific mtDNA mouse models in combination with a spontaneous cancer mouse model) and small animal models (e.g. Danio rerio) could be potentially interesting to use. For future research, we foresee that unraveling mtDNA variations can contribute to personalized therapy for specific cancer types and improve the outcome of the disease.

摘要

已经发现核基因编码的线粒体成分中的几种突变与癌症风险增加有关,甚至是致病的,例如琥珀酸脱氢酶(SDHB、SDHC 和 SDHD 基因)和异柠檬酸脱氢酶(IDH1 和 IDH2 基因)。最近的研究表明,线粒体 DNA(mtDNA)突变在多种癌症的发展中起着重要作用。各种研究将 mtDNA 异常,包括突变、缺失、倒位和拷贝数改变,与线粒体功能障碍联系起来。这可能解释了许多癌细胞类型中细胞生物能量学的受阻。种系(例如 m.10398A>G;m.6253T>C)和体细胞 mtDNA 突变以及 mtDNA 拷贝数的差异似乎与癌症风险有关。根据多击模型,mtDNA 似乎可以作为驱动突变或互补基因突变发挥作用。这可以增强细胞的诱变/克隆形成潜力,正如 m.8993T>G 所观察到的那样,或者影响癌症进展后期的转移潜力。或者,其他 mtDNA 变异将是肿瘤中的无辜乘客突变,因此不会对肿瘤形成或转移潜力做出贡献。在这篇综述中,我们讨论了报告的 mtDNA 变异如何干扰癌症治疗,以及这对当前成功的药物干预有何影响。已经报道 MT-ND4 和 mtDNA 耗竭中的突变与顺铂耐药有关。二甲双胍对 OXPHOS 的药物损伤可以提高放射治疗的效率。为了研究癌症中的线粒体功能障碍,可以使用不同的细胞模型(如 ρ(0) 细胞或细胞杂交体)、体内小鼠模型(异种移植物和与自发性癌症小鼠模型相结合的特定 mtDNA 小鼠模型)和小动物模型(例如斑马鱼)。对于未来的研究,我们预计揭示 mtDNA 变异可以为特定类型的癌症提供个性化治疗,并改善疾病的预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验