Suppr超能文献

在目标导向导航过程中,视流区域与对导航有反应的脑区之间的功能连接。

Functional connections between optic flow areas and navigationally responsive brain regions during goal-directed navigation.

作者信息

Sherrill Katherine R, Chrastil Elizabeth R, Ross Robert S, Erdem Uğur M, Hasselmo Michael E, Stern Chantal E

机构信息

Center for Memory and Brain, Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.

Department of Psychology, University of New Hampshire, Durham, NH 03824, USA.

出版信息

Neuroimage. 2015 Sep;118:386-96. doi: 10.1016/j.neuroimage.2015.06.009. Epub 2015 Jun 6.

Abstract

Recent computational models suggest that visual input from optic flow provides information about egocentric (navigator-centered) motion and influences firing patterns in spatially tuned cells during navigation. Computationally, self-motion cues can be extracted from optic flow during navigation. Despite the importance of optic flow to navigation, a functional link between brain regions sensitive to optic flow and brain regions important for navigation has not been established in either humans or animals. Here, we used a beta-series correlation methodology coupled with two fMRI tasks to establish this functional link during goal-directed navigation in humans. Functionally defined optic flow sensitive cortical areas V3A, V6, and hMT+ were used as seed regions. fMRI data was collected during a navigation task in which participants updated position and orientation based on self-motion cues to successfully navigate to an encoded goal location. The results demonstrate that goal-directed navigation requiring updating of position and orientation in the first person perspective involves a cooperative interaction between optic flow sensitive regions V3A, V6, and hMT+ and the hippocampus, retrosplenial cortex, posterior parietal cortex, and medial prefrontal cortex. These functional connections suggest a dynamic interaction between these systems to support goal-directed navigation.

摘要

最近的计算模型表明,来自光流的视觉输入提供了关于自我中心(以导航者为中心)运动的信息,并在导航过程中影响空间调谐细胞的放电模式。从计算角度来看,自我运动线索可以在导航过程中从光流中提取。尽管光流对导航很重要,但在人类或动物中,对光流敏感的脑区与对导航重要的脑区之间的功能联系尚未建立。在这里,我们使用β系列相关方法结合两项功能磁共振成像任务,在人类目标导向导航过程中建立这种功能联系。功能定义的对光流敏感的皮质区域V3A、V6和hMT+被用作种子区域。在一项导航任务中收集功能磁共振成像数据,在该任务中,参与者根据自我运动线索更新位置和方向,以成功导航到编码的目标位置。结果表明,在第一人称视角下需要更新位置和方向的目标导向导航涉及光流敏感区域V3A、V6和hMT+与海马体、压后皮质、顶叶后皮质和内侧前额叶皮质之间的协同相互作用。这些功能连接表明这些系统之间存在动态相互作用以支持目标导向导航。

相似文献

9
Neural bases of self- and object-motion in a naturalistic vision.自然视觉中的自我和物体运动的神经基础。
Hum Brain Mapp. 2020 Mar;41(4):1084-1111. doi: 10.1002/hbm.24862. Epub 2019 Nov 11.
10
Vestibular and visual brain areas in the medial cortex of the human brain.人脑内侧皮质的前庭和视觉脑区。
J Neurophysiol. 2023 Apr 1;129(4):948-962. doi: 10.1152/jn.00431.2022. Epub 2023 Mar 29.

引用本文的文献

10
Rethinking retrosplenial cortex: Perspectives and predictions.重新审视压后皮质:观点与预测
Neuron. 2023 Jan 18;111(2):150-175. doi: 10.1016/j.neuron.2022.11.006. Epub 2022 Dec 1.

本文引用的文献

2
Functional correlates of optic flow motion processing in Parkinson's disease.帕金森病中视流运动处理的功能相关性
Front Integr Neurosci. 2014 Jul 8;8:57. doi: 10.3389/fnint.2014.00057. eCollection 2014.
4
Differential neural network configuration during human path integration.人类路径整合过程中的差异神经网络结构。
Front Hum Neurosci. 2014 Apr 29;8:263. doi: 10.3389/fnhum.2014.00263. eCollection 2014.
8
Contrasting effects on path integration after hippocampal damage in humans and rats.人类和大鼠海马损伤后对路径整合的对比影响。
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4732-7. doi: 10.1073/pnas.1300869110. Epub 2013 Feb 12.
10
Modeling boundary vector cell firing given optic flow as a cue.基于光流作为提示,对边界矢量细胞的发放进行建模。
PLoS Comput Biol. 2012;8(6):e1002553. doi: 10.1371/journal.pcbi.1002553. Epub 2012 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验