Suppr超能文献

使用数据非依赖采集质谱法对胰岛素信号通路进行靶向磷酸化蛋白质组学研究。

Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry.

作者信息

Parker Benjamin L, Yang Guang, Humphrey Sean J, Chaudhuri Rima, Ma Xiuquan, Peterman Scott, James David E

机构信息

Charles Perkins Centre, School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2006, Australia. Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.

Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried 82152, Germany.

出版信息

Sci Signal. 2015 Jun 9;8(380):rs6. doi: 10.1126/scisignal.aaa3139.

Abstract

A major goal in signaling biology is the establishment of high-throughput quantitative methods for measuring changes in protein phosphorylation of entire signal transduction pathways across many different samples comprising temporal or dose data or patient samples. Data-independent acquisition (DIA) mass spectrometry (MS) methods, which involve tandem MS scans that are collected independently of precursor ion information and then are followed by targeted searching for known peptides, may achieve this goal. We applied DIA-MS to systematically quantify phosphorylation of components in the insulin signaling network in response to insulin as well as in stimulated cells exposed to a panel of kinase inhibitors targeting key downstream effectors in the network. We accurately quantified the effect of insulin on phosphorylation of 86 protein targets in the insulin signaling network using either stable isotope standards (SIS) or label-free quantification (LFQ) and mapped signal transmission through this network. By matching kinases to specific phosphorylation events (based on linear consensus motifs and temporal phosphorylation) to the quantitative phosphoproteomic data from cells exposed to inhibitors, we investigated predicted kinase-substrate relationships of AKT and mTOR in a targeted fashion. Furthermore, we applied this approach to show that AKT2-dependent phosphorylation of GAB2 promoted insulin signaling but inhibited epidermal growth factor (EGF) signaling in a manner dependent on 14-3-3 binding. Because DIA-MS can increase throughput and improve the reproducibility of peptide detection across multiple samples, this approach should facilitate more accurate, comprehensive, and quantitative assessment of signaling networks under various experimental conditions than are possible using other MS proteomic methods.

摘要

信号生物学的一个主要目标是建立高通量定量方法,用于测量整个信号转导通路中蛋白质磷酸化的变化,这些变化存在于包含时间或剂量数据的许多不同样本或患者样本中。数据非依赖型采集(DIA)质谱(MS)方法,涉及独立于前体离子信息收集的串联质谱扫描,然后针对性地搜索已知肽段,可能实现这一目标。我们应用DIA-MS系统地定量胰岛素信号网络中各组分的磷酸化,以响应胰岛素以及暴露于一组针对该网络关键下游效应器的激酶抑制剂刺激的细胞。我们使用稳定同位素标准品(SIS)或无标记定量(LFQ)准确地定量了胰岛素对胰岛素信号网络中86个蛋白质靶点磷酸化的影响,并绘制了通过该网络的信号传递图谱。通过将激酶与特定的磷酸化事件(基于线性共有基序和时间磷酸化)与暴露于抑制剂的细胞的定量磷酸化蛋白质组数据相匹配,我们有针对性地研究了AKT和mTOR预测性的激酶-底物关系。此外,我们应用该方法表明GAB2依赖于AKT2 的磷酸化促进了胰岛素信号传导,但以依赖于14-3-3结合的方式抑制了表皮生长因子(EGF)信号传导。由于DIA-MS可以提高通量并改善多个样本间肽段检测的重现性,与使用其他MS蛋白质组学方法相比,这种方法应有助于在各种实验条件下更准确、全面和定量地评估信号网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验