Röling Wilfred F M, Aerts Joost W, Patty C H Lucas, ten Kate Inge Loes, Ehrenfreund Pascale, Direito Susana O L
1 Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam , Amsterdam, the Netherlands .
2 Department of Earth Sciences, Faculty of Geosciences, Utrecht University , Utrecht, the Netherlands .
Astrobiology. 2015 Jun;15(6):492-507. doi: 10.1089/ast.2014.1276.
The detection of biomarkers plays a central role in our effort to establish whether there is, or was, life beyond Earth. In this review, we address the importance of considering mineralogy in relation to the selection of locations and biomarker detection methodologies with characteristics most promising for exploration. We review relevant mineral-biomarker and mineral-microbe interactions. The local mineralogy on a particular planet reflects its past and current environmental conditions and allows a habitability assessment by comparison with life under extreme conditions on Earth. The type of mineral significantly influences the potential abundances and types of biomarkers and microorganisms containing these biomarkers. The strong adsorptive power of some minerals aids in the preservation of biomarkers and may have been important in the origin of life. On the other hand, this strong adsorption as well as oxidizing properties of minerals can interfere with efficient extraction and detection of biomarkers. Differences in mechanisms of adsorption and in properties of minerals and biomarkers suggest that it will be difficult to design a single extraction procedure for a wide range of biomarkers. While on Mars samples can be used for direct detection of biomarkers such as nucleic acids, amino acids, and lipids, on other planetary bodies remote spectrometric detection of biosignatures has to be relied upon. The interpretation of spectral signatures of photosynthesis can also be affected by local mineralogy. We identify current gaps in our knowledge and indicate how they may be filled to improve the chances of detecting biomarkers on Mars and beyond.
生物标志物的检测在我们确定地球之外是否存在生命的努力中起着核心作用。在这篇综述中,我们阐述了在选择具有最具勘探前景特征的地点和生物标志物检测方法时考虑矿物学的重要性。我们回顾了相关的矿物 - 生物标志物和矿物 - 微生物相互作用。特定行星上的局部矿物学反映了其过去和当前的环境条件,并通过与地球上极端条件下的生命进行比较来进行宜居性评估。矿物的类型会显著影响生物标志物以及含有这些生物标志物的微生物的潜在丰度和类型。一些矿物的强吸附能力有助于生物标志物的保存,并且可能在生命起源中发挥了重要作用。另一方面,这种强吸附以及矿物的氧化特性会干扰生物标志物的有效提取和检测。矿物与生物标志物在吸附机制和性质上的差异表明,很难设计出一种适用于广泛生物标志物的单一提取程序。在火星上,样本可用于直接检测核酸、氨基酸和脂质等生物标志物,而在其他行星体上,则必须依靠对生物特征的遥测光谱检测。光合作用光谱特征的解释也可能受到局部矿物学的影响。我们确定了当前知识上的空白,并指出如何填补这些空白以提高在火星及其他星球上检测生物标志物的几率。