Suppr超能文献

通过与自动交互检测(GLM-AID)和人工神经网络模型(ANNs)相关联的一般线性模型来鉴定番茄特征和真伪的相关植物化学成分。

Identification of Relevant Phytochemical Constituents for Characterization and Authentication of Tomatoes by General Linear Model Linked to Automatic Interaction Detection (GLM-AID) and Artificial Neural Network Models (ANNs).

作者信息

Hernández Suárez Marcos, Astray Dopazo Gonzalo, Larios López Dina, Espinosa Francisco

机构信息

Aula Dei Scientific Technological Park Foundation, Zaragoza, Spain.

Department of Geological Sciences, College of Arts and Sciences, Ohio University, Athens, United States of America; Department of Physical Chemistry, Faculty of Science, University of Vigo, Ourense, Spain.

出版信息

PLoS One. 2015 Jun 15;10(6):e0128566. doi: 10.1371/journal.pone.0128566. eCollection 2015.

Abstract

There are a large number of tomato cultivars with a wide range of morphological, chemical, nutritional and sensorial characteristics. Many factors are known to affect the nutrient content of tomato cultivars. A complete understanding of the effect of these factors would require an exhaustive experimental design, multidisciplinary scientific approach and a suitable statistical method. Some multivariate analytical techniques such as Principal Component Analysis (PCA) or Factor Analysis (FA) have been widely applied in order to search for patterns in the behaviour and reduce the dimensionality of a data set by a new set of uncorrelated latent variables. However, in some cases it is not useful to replace the original variables with these latent variables. In this study, Automatic Interaction Detection (AID) algorithm and Artificial Neural Network (ANN) models were applied as alternative to the PCA, AF and other multivariate analytical techniques in order to identify the relevant phytochemical constituents for characterization and authentication of tomatoes. To prove the feasibility of AID algorithm and ANN models to achieve the purpose of this study, both methods were applied on a data set with twenty five chemical parameters analysed on 167 tomato samples from Tenerife (Spain). Each tomato sample was defined by three factors: cultivar, agricultural practice and harvest date. General Linear Model linked to AID (GLM-AID) tree-structured was organized into 3 levels according to the number of factors. p-Coumaric acid was the compound the allowed to distinguish the tomato samples according to the day of harvest. More than one chemical parameter was necessary to distinguish among different agricultural practices and among the tomato cultivars. Several ANN models, with 25 and 10 input variables, for the prediction of cultivar, agricultural practice and harvest date, were developed. Finally, the models with 10 input variables were chosen with fit's goodness between 44 and 100%. The lowest fits were for the cultivar classification, this low percentage suggests that other kind of chemical parameter should be used to identify tomato cultivars.

摘要

有大量具有广泛形态、化学、营养和感官特性的番茄品种。已知许多因素会影响番茄品种的营养成分。要全面了解这些因素的影响,需要详尽的实验设计、多学科科学方法和合适的统计方法。一些多元分析技术,如主成分分析(PCA)或因子分析(FA),已被广泛应用,以便在行为中寻找模式,并通过一组新的不相关潜在变量来降低数据集的维度。然而,在某些情况下,用这些潜在变量替代原始变量并无用处。在本研究中,应用自动交互检测(AID)算法和人工神经网络(ANN)模型作为PCA、AF和其他多元分析技术的替代方法,以识别用于番茄表征和鉴定的相关植物化学成分。为证明AID算法和ANN模型实现本研究目的的可行性,将这两种方法应用于一个数据集,该数据集对来自西班牙特内里费岛的167个番茄样本分析了25个化学参数。每个番茄样本由三个因素定义:品种、农业实践和收获日期。与AID相关的通用线性模型(GLM - AID)树结构根据因素数量分为3个层次。对香豆酸是能够根据收获日期区分番茄样本的化合物。区分不同农业实践和番茄品种需要不止一个化学参数。开发了几个具有25个和10个输入变量的ANN模型,用于预测品种、农业实践和收获日期。最后,选择了具有10个输入变量且拟合优度在44%至100%之间的模型。拟合度最低的是品种分类,这个低百分比表明应该使用其他类型的化学参数来鉴定番茄品种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0083/4467870/2b493263b6f0/pone.0128566.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验