Hannezo Edouard, Dong Bo, Recho Pierre, Joanny Jean-François, Hayashi Shigeo
Physicochimie Curie (Institut Curie/CNRS-UMR168/Université Pierre et Marie Curie), Institut Curie, Paris Sciences et Lettres, Centre de Recherche, 75248 Paris Cedex 05, France; Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom;
Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan; Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8620-5. doi: 10.1073/pnas.1504762112. Epub 2015 Jun 15.
An essential question of morphogenesis is how patterns arise without preexisting positional information, as inspired by Turing. In the past few years, cytoskeletal flows in the cell cortex have been identified as a key mechanism of molecular patterning at the subcellular level. Theoretical and in vitro studies have suggested that biological polymers such as actomyosin gels have the property to self-organize, but the applicability of this concept in an in vivo setting remains unclear. Here, we report that the regular spacing pattern of supracellular actin rings in the Drosophila tracheal tubule is governed by a self-organizing principle. We propose a simple biophysical model where pattern formation arises from the interplay of myosin contractility and actin turnover. We validate the hypotheses of the model using photobleaching experiments and report that the formation of actin rings is contractility dependent. Moreover, genetic and pharmacological perturbations of the physical properties of the actomyosin gel modify the spacing of the pattern, as the model predicted. In addition, our model posited a role of cortical friction in stabilizing the spacing pattern of actin rings. Consistently, genetic depletion of apical extracellular matrix caused strikingly dynamic movements of actin rings, mirroring our model prediction of a transition from steady to chaotic actin patterns at low cortical friction. Our results therefore demonstrate quantitatively that a hydrodynamical instability of the actin cortex can trigger regular pattern formation and drive morphogenesis in an in vivo setting.
形态发生的一个基本问题是,如受图灵启发,在没有预先存在的位置信息的情况下模式是如何出现的。在过去几年中,细胞皮层中的细胞骨架流动已被确定为亚细胞水平分子模式形成的关键机制。理论和体外研究表明,诸如肌动球蛋白凝胶等生物聚合物具有自组织特性,但这一概念在体内环境中的适用性仍不明确。在这里,我们报告果蝇气管小管中细胞上肌动蛋白环的规则间隔模式受自组织原理支配。我们提出了一个简单的生物物理模型,其中模式形成源于肌球蛋白收缩性和肌动蛋白周转的相互作用。我们使用光漂白实验验证了该模型的假设,并报告肌动蛋白环的形成依赖于收缩性。此外,如模型所预测的,对肌动球蛋白凝胶物理特性的遗传和药理学扰动会改变模式的间距。此外,我们的模型假定皮层摩擦力在稳定肌动蛋白环的间距模式中起作用。一致地,顶端细胞外基质的基因缺失导致肌动蛋白环显著的动态运动,这与我们模型中关于在低皮层摩擦力下从稳定的肌动蛋白模式向混沌模式转变的预测相符。因此,我们的结果定量地证明了肌动蛋白皮层的流体动力学不稳定性可以触发规则模式形成并在体内环境中驱动形态发生。