Bhakat Soumendranath
Division of Biophysical Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
Mol Biosyst. 2015 Aug;11(8):2303-11. doi: 10.1039/c5mb00262a.
3C protease of Coxsackievirus B3 (CVB3) plays an essential role in the viral replication cycle, and therefore, emerged as an attractive therapeutic target for the treatment of human diseases caused by CVB3 infection. In this study, we report the first account of the molecular impact of the T68A/N126Y double mutant (Mutant(Bound)) using an integrated computational approach. Molecular dynamics simulation and post-dynamics binding free energy, principal component analysis (PCA), hydrogen bond occupancy, SASA, R(g) and RMSF confirm that T68A/N126Y instigated an increased conformational flexibility due to the loss of intra- and inter-molecular hydrogen bond interactions and other prominent binding forces, which led to a decreased protease grip on the ligand (3CPI). The double mutations triggered a distortion orientation of 3CPI in the active site and decreases the binding energy, ΔG(bind) (∼3 kcal mol(-1)), compared to the wild type (Wild(Bound)). The van der Waals and electrostatic energy contributions coming from residues 68 and 126 are lower for Mutant(Bound) when compared with Wild(Bound). In addition, variation in the overall enzyme motion as evident from the PCA, distorted hydrogen bonding network and loss of protein-ligand interactions resulted in a loss of inhibitor efficiency. The comprehensive molecular insight gained from this study should be of great importance in understanding the drug resistance against CVB3 3C protease; also, it will assist in the designing of novel Coxsackievirus B3 inhibitors with high ligand efficacy on resistant strains.
柯萨奇病毒B3(CVB3)的3C蛋白酶在病毒复制周期中起着至关重要的作用,因此,它成为治疗CVB3感染所致人类疾病的一个有吸引力的治疗靶点。在本研究中,我们首次使用综合计算方法阐述了T68A/N126Y双突变体(突变体(结合态))的分子影响。分子动力学模拟以及动力学后的结合自由能、主成分分析(PCA)、氢键占有率、溶剂可及表面积(SASA)、回转半径(R(g))和均方根波动(RMSF)证实,由于分子内和分子间氢键相互作用以及其他显著结合力的丧失,T68A/N126Y引发了构象灵活性增加,这导致蛋白酶对配体(3CPI)的结合力下降。与野生型(野生型(结合态))相比,双突变引发了3CPI在活性位点的扭曲取向,并降低了结合能ΔG(bind)(约3千卡/摩尔)。与野生型(结合态)相比,突变体(结合态)中来自68位和126位残基的范德华力和静电能贡献更低。此外,从PCA明显看出的整体酶运动变化、氢键网络的扭曲以及蛋白质-配体相互作用的丧失导致了抑制剂效率的丧失。从本研究中获得的全面分子见解对于理解针对CVB3 3C蛋白酶的耐药性具有重要意义;此外,它将有助于设计对耐药菌株具有高配体效力的新型柯萨奇病毒B3抑制剂。