Schumacher Johannes, Wunderle Thomas, Fries Pascal, Jäkel Frank, Pipa Gordon
Neuroinformatics Department, Institute of Cognitive Science, University of Osnabrück, Osnabrück D-49069, Germany
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt D-60528 Germany
Neural Comput. 2015 Aug;27(8):1555-608. doi: 10.1162/NECO_a_00756. Epub 2015 Jun 16.
In neuroscience, data are typically generated from neural network activity. The resulting time series represent measurements from spatially distributed subsystems with complex interactions, weakly coupled to a high-dimensional global system. We present a statistical framework to estimate the direction of information flow and its delay in measurements from systems of this type. Informed by differential topology, gaussian process regression is employed to reconstruct measurements of putative driving systems from measurements of the driven systems. These reconstructions serve to estimate the delay of the interaction by means of an analytical criterion developed for this purpose. The model accounts for a range of possible sources of uncertainty, including temporally evolving intrinsic noise, while assuming complex nonlinear dependencies. Furthermore, we show that if information flow is delayed, this approach also allows for inference in strong coupling scenarios of systems exhibiting synchronization phenomena. The validity of the method is demonstrated with a variety of delay-coupled chaotic oscillators. In addition, we show that these results seamlessly transfer to local field potentials in cat visual cortex.
在神经科学中,数据通常由神经网络活动生成。由此产生的时间序列代表了来自具有复杂相互作用的空间分布式子系统的测量值,这些子系统与一个高维全局系统弱耦合。我们提出了一个统计框架,用于估计这种类型系统测量中的信息流方向及其延迟。受微分拓扑学启发,采用高斯过程回归从受驱系统的测量值中重建假定驱动系统的测量值。这些重建用于通过为此目的开发的分析标准来估计相互作用的延迟。该模型考虑了一系列可能的不确定性来源,包括随时间演变的内在噪声,同时假设存在复杂的非线性依赖性。此外,我们表明,如果信息流存在延迟,这种方法还允许在表现出同步现象的系统的强耦合场景中进行推断。该方法的有效性通过各种延迟耦合混沌振荡器得到了证明。此外,我们表明这些结果可以无缝地应用于猫视觉皮层的局部场电位。