Suppr超能文献

Editorial: Complexity and emergence in brain network analyses.

作者信息

Telesford Qawi K, Simpson Sean L, Kolaczyk Eric D

机构信息

Complex Systems Group, Department of Bioengineering, University of Pennsylvania Philadelphia, PA, USA.

Laboratory for Complex Brain Networks, Division of Public Health Sciences, Wake Forest University School of Medicine Winston-Salem, NC, USA.

出版信息

Front Comput Neurosci. 2015 Jun 2;9:65. doi: 10.3389/fncom.2015.00065. eCollection 2015.

Abstract
摘要

相似文献

1
Editorial: Complexity and emergence in brain network analyses.
Front Comput Neurosci. 2015 Jun 2;9:65. doi: 10.3389/fncom.2015.00065. eCollection 2015.
3
Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.
J Neurosci. 2017 Aug 30;37(35):8399-8411. doi: 10.1523/JNEUROSCI.0485-17.2017. Epub 2017 Jul 31.
4
Dynamics on networks: the role of local dynamics and global networks on the emergence of hypersynchronous neural activity.
PLoS Comput Biol. 2014 Nov 13;10(11):e1003947. doi: 10.1371/journal.pcbi.1003947. eCollection 2014 Nov.
5
Reduced Network Dynamics on Functional MRI Signals Cognitive Impairment in Multiple Sclerosis.
Radiology. 2019 Aug;292(2):449-457. doi: 10.1148/radiol.2019182623. Epub 2019 Jun 25.
6
Local inhibitory plasticity tunes macroscopic brain dynamics and allows the emergence of functional brain networks.
Neuroimage. 2016 Jan 1;124(Pt A):85-95. doi: 10.1016/j.neuroimage.2015.08.069. Epub 2015 Sep 5.
7
Resting state networks in empirical and simulated dynamic functional connectivity.
Neuroimage. 2017 Oct 1;159:388-402. doi: 10.1016/j.neuroimage.2017.07.065. Epub 2017 Aug 3.
9
Analysis of structure-function network decoupling in the brain systems of spastic diplegic cerebral palsy.
Hum Brain Mapp. 2017 Oct;38(10):5292-5306. doi: 10.1002/hbm.23738. Epub 2017 Jul 21.
10
The complex hierarchical topology of EEG functional connectivity.
J Neurosci Methods. 2017 Jan 30;276:1-12. doi: 10.1016/j.jneumeth.2016.11.003. Epub 2016 Nov 14.

本文引用的文献

1
A multimodal approach for determining brain networks by jointly modeling functional and structural connectivity.
Front Comput Neurosci. 2015 Feb 20;9:22. doi: 10.3389/fncom.2015.00022. eCollection 2015.
2
Statistical network analysis for functional MRI: summary networks and group comparisons.
Front Comput Neurosci. 2014 May 6;8:51. doi: 10.3389/fncom.2014.00051. eCollection 2014.
3
Routing in the brain.
Front Comput Neurosci. 2014 Apr 10;8:44. doi: 10.3389/fncom.2014.00044. eCollection 2014.
4
Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses.
Front Comput Neurosci. 2014 Mar 19;8:31. doi: 10.3389/fncom.2014.00031. eCollection 2014.
5
The Laplacian spectrum of neural networks.
Front Comput Neurosci. 2014 Jan 13;7:189. doi: 10.3389/fncom.2013.00189.
6
A permutation testing framework to compare groups of brain networks.
Front Comput Neurosci. 2013 Nov 25;7:171. doi: 10.3389/fncom.2013.00171. eCollection 2013.
7
Defining nodes in complex brain networks.
Front Comput Neurosci. 2013 Nov 22;7:169. doi: 10.3389/fncom.2013.00169.
8
Hierarchical vector auto-regressive models and their applications to multi-subject effective connectivity.
Front Comput Neurosci. 2013 Nov 12;7:159. doi: 10.3389/fncom.2013.00159. eCollection 2013.
9
Detecting functional connectivity change points for single-subject fMRI data.
Front Comput Neurosci. 2013 Oct 30;7:143. doi: 10.3389/fncom.2013.00143. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验