Department of Biostatistical Sciences, Wake Forest School of Medicine Winston-Salem, NC, USA.
Front Comput Neurosci. 2013 Nov 25;7:171. doi: 10.3389/fncom.2013.00171. eCollection 2013.
Brain network analyses have moved to the forefront of neuroimaging research over the last decade. However, methods for statistically comparing groups of networks have lagged behind. These comparisons have great appeal for researchers interested in gaining further insight into complex brain function and how it changes across different mental states and disease conditions. Current comparison approaches generally either rely on a summary metric or on mass-univariate nodal or edge-based comparisons that ignore the inherent topological properties of the network, yielding little power and failing to make network level comparisons. Gleaning deeper insights into normal and abnormal changes in complex brain function demands methods that take advantage of the wealth of data present in an entire brain network. Here we propose a permutation testing framework that allows comparing groups of networks while incorporating topological features inherent in each individual network. We validate our approach using simulated data with known group differences. We then apply the method to functional brain networks derived from fMRI data.
在过去的十年中,脑网络分析已经成为神经影像学研究的前沿。然而,用于对网络组进行统计比较的方法却落后了。对于那些有兴趣深入了解复杂大脑功能以及其如何在不同的心理状态和疾病条件下变化的研究人员来说,这些比较具有很大的吸引力。目前的比较方法通常要么依赖于摘要指标,要么依赖于忽略网络内在拓扑性质的基于节点或边的多元比较,从而导致统计功效低下,无法进行网络级别的比较。深入了解复杂大脑功能的正常和异常变化需要利用整个大脑网络中存在的丰富数据的方法。在这里,我们提出了一种置换检验框架,该框架允许在纳入每个网络内在拓扑特征的同时比较网络组。我们使用具有已知组差异的模拟数据验证了我们的方法。然后,我们将该方法应用于从 fMRI 数据中得出的功能脑网络。