Suppr超能文献

局部抑制性可塑性调节宏观脑动力学,并使功能性脑网络得以出现。

Local inhibitory plasticity tunes macroscopic brain dynamics and allows the emergence of functional brain networks.

作者信息

Hellyer Peter J, Jachs Barbara, Clopath Claudia, Leech Robert

机构信息

Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK; Centre for Neuroimaging Science, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London SE5 8AF, UK.

Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.

出版信息

Neuroimage. 2016 Jan 1;124(Pt A):85-95. doi: 10.1016/j.neuroimage.2015.08.069. Epub 2015 Sep 5.

Abstract

Rich, spontaneous brain activity has been observed across a range of different temporal and spatial scales. These dynamics are thought to be important for efficient neural functioning. A range of experimental evidence suggests that these neural dynamics are maintained across a variety of different cognitive states, in response to alterations of the environment and to changes in brain configuration (e.g., across individuals, development and in many neurological disorders). This suggests that the brain has evolved mechanisms to maintain rich dynamics across a broad range of situations. Several mechanisms based around homeostatic plasticity have been proposed to explain how these dynamics emerge from networks of neurons at the microscopic scale. Here we explore how a homeostatic mechanism may operate at the macroscopic scale: in particular, focusing on how it interacts with the underlying structural network topology and how it gives rise to well-described functional connectivity networks. We use a simple mean-field model of the brain, constrained by empirical white matter structural connectivity where each region of the brain is simulated using a pool of excitatory and inhibitory neurons. We show, as with the microscopic work, that homeostatic plasticity regulates network activity and allows for the emergence of rich, spontaneous dynamics across a range of brain configurations, which otherwise show a very limited range of dynamic regimes. In addition, the simulated functional connectivity of the homeostatic model better resembles empirical functional connectivity network. To accomplish this, we show how the inhibitory weights adapt over time to capture important graph theoretic properties of the underlying structural network. Therefore, this work presents suggests how inhibitory homeostatic mechanisms facilitate stable macroscopic dynamics to emerge in the brain, aiding the formation of functional connectivity networks.

摘要

在一系列不同的时间和空间尺度上都观察到了丰富的、自发的大脑活动。这些动态变化被认为对高效的神经功能很重要。一系列实验证据表明,这些神经动力学在各种不同的认知状态下都能得以维持,以响应环境的改变和大脑结构的变化(例如,在个体之间、发育过程以及许多神经系统疾病中)。这表明大脑已经进化出了在广泛情况下维持丰富动态变化的机制。已经提出了几种基于稳态可塑性的机制来解释这些动态变化是如何在微观尺度上从神经元网络中产生的。在这里,我们探讨一种稳态机制如何在宏观尺度上发挥作用:特别是关注它如何与潜在的结构网络拓扑相互作用,以及它如何产生描述详尽的功能连接网络。我们使用一个简单的大脑平均场模型,该模型受经验性白质结构连接性的约束,其中大脑的每个区域都用一组兴奋性和抑制性神经元进行模拟。我们发现,与微观研究一样,稳态可塑性调节网络活动,并允许在一系列大脑结构中出现丰富的、自发的动态变化,否则这些结构会表现出非常有限的动态范围。此外,稳态模型的模拟功能连接更类似于经验性功能连接网络。为了实现这一点,我们展示了抑制权重如何随时间适应,以捕捉潜在结构网络的重要图论特性。因此,这项研究表明抑制性稳态机制如何促进大脑中稳定的宏观动态变化的出现,有助于功能连接网络的形成。

相似文献

8
Homeostatic scaling of excitability in recurrent neural networks.递归神经网络中兴奋性的稳态缩放。
PLoS Comput Biol. 2012;8(5):e1002494. doi: 10.1371/journal.pcbi.1002494. Epub 2012 May 3.

引用本文的文献

7
Homeodynamic feedback inhibition control in whole-brain simulations.全脑模拟中的内稳态反馈抑制控制
PLoS Comput Biol. 2024 Dec 2;20(12):e1012595. doi: 10.1371/journal.pcbi.1012595. eCollection 2024 Dec.

本文引用的文献

8
The metastable brain.亚稳态大脑。
Neuron. 2014 Jan 8;81(1):35-48. doi: 10.1016/j.neuron.2013.12.022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验