Dugasani Sreekantha Reddy, Kim Myoungsoon, Lee In-yeal, Kim Jang Ah, Gnapareddy Bramaramba, Lee Keun Woo, Kim Taesung, Huh Nam, Kim Gil-Ho, Park Sang Chul, Park Sung Ha
Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea. Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea.
Nanotechnology. 2015 Jul 10;26(27):275604. doi: 10.1088/0957-4484/26/27/275604. Epub 2015 Jun 18.
We studied the physical characteristics of modified-DNA (M-DNA) double crossover crystals fabricated via substrate-assisted growth with various concentrations of four different divalent metallic ions, Cu(2+), Ni(2+), Zn(2+), and Co(2+). Atomic force microscopy (AFM) was used to test the stability of the M-DNA crystals with different metal ion concentrations. The AFM images show that M-DNA crystals formed without deformation at up to the critical concentrations of 6 mM of [Cu(2+)], 1.5 mM of [Ni(2+)], 1 mM of [Zn(2+)], and 1 mM of [Co(2+)]. Above these critical concentrations, the M-DNA crystals exhibited deformed, amorphous structures. Raman spectroscopy was then used to identify the preference of the metal ion coordinate sites. The intensities of the Raman bands gradually decreased as the concentration of the metal ions increased, and when the metal ion concentrations increased beyond the critical values, the Raman band of the amorphous M-DNA was significantly suppressed. The metal ions had a preferential binding order in the DNA molecules with G-C and A-T base pairs followed by the phosphate backbone. A two-probe station was used to measure the electrical current-voltage properties of the crystals which indicated that the maximum currents of the M-DNA complexes could be achieved at around the critical concentration of each ion. We expect that the functionalized ion-doped M-DNA crystals will allow for efficient devices and sensors to be fabricated in the near future.
我们研究了通过底物辅助生长法制备的修饰 DNA(M-DNA)双交叉晶体的物理特性,该晶体含有四种不同二价金属离子 Cu(2+)、Ni(2+)、Zn(2+) 和 Co(2+) 的各种浓度。原子力显微镜(AFM)用于测试不同金属离子浓度下 M-DNA 晶体的稳定性。AFM 图像显示,在 [Cu(2+)] 为 6 mM、[Ni(2+)] 为 1.5 mM、[Zn(2+)] 为 1 mM 和 [Co(2+)] 为 1 mM 的临界浓度以下,M-DNA 晶体形成时没有变形。高于这些临界浓度,M-DNA 晶体呈现出变形的无定形结构。然后使用拉曼光谱来确定金属离子配位位点的偏好。随着金属离子浓度的增加,拉曼带的强度逐渐降低,并且当金属离子浓度超过临界值时,无定形 M-DNA 的拉曼带被显著抑制。金属离子在具有 G-C 和 A-T 碱基对以及磷酸主链的 DNA 分子中具有优先结合顺序。使用双探针工作站测量晶体的电流 - 电压特性,结果表明 M-DNA 复合物的最大电流可以在每种离子的临界浓度左右实现。我们预计,功能化的离子掺杂 M-DNA 晶体将在不久的将来允许制造高效的器件和传感器。