Suppr超能文献

对人类2类二氢乳清酸脱氢酶催化二氢乳清酸氧化为乳清酸机制的深入研究:量子力学/分子力学自由能研究

Insights into the mechanism of oxidation of dihydroorotate to orotate catalysed by human class 2 dihydroorotate dehydrogenase: a QM/MM free energy study.

作者信息

Alves Cláudio Nahum, Silva José Rogério A, Roitberg Adrian E

机构信息

Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil. mail:

出版信息

Phys Chem Chem Phys. 2015 Jul 21;17(27):17790-6. doi: 10.1039/c5cp02016f. Epub 2015 Jun 19.

Abstract

The dihydroorotate dehydrogenase (DHOD) enzyme catalyzes the unique redox reaction in the de novo pyrimidine biosynthesis pathway. In this reaction, the oxidation of dihydroorotate (DHO) to orotate (OA) and reduction of the flavin mononucleotide (FMN) cofactor is catalysed by DHOD. The class 2 DHOD, to which the human enzyme belongs, was experimentally shown to follow a stepwise mechanism but the data did not allow the determination of the order of bond-breaking in a stepwise oxidation of DHO. The goal of this study is to understand the reaction mechanism at the molecular level of class 2 DHOD, which may aid in the design of inhibitors that selectively impact the activity of only certain members of the enzyme family. In this paper, the catalytic mechanism of oxidation of DHO to OA in human DHOD was studied using a hybrid Quantum Mechanical/Molecular Mechanical (QM/MM) approach and Molecular Dynamics (MD) simulations. The free energy barriers calculated reveal that the mechanism in human DHOD occurs via a stepwise reaction pathway. In the first step, a proton is abstracted from the C5 of DHO to the deprotonated Ser215 side chain. Whereas, in the second step, the transfer of the hydride or hydride equivalent from the C6 of DHO to the N5 of FMN, where free energy barrier calculated by the DFT/MM level is 10.84 kcal mol(-1). Finally, a residual decomposition analysis was carried out in order to elucidate the influence of the catalytic region residues during DHO oxidation.

摘要

二氢乳清酸脱氢酶(DHOD)催化从头嘧啶生物合成途径中独特的氧化还原反应。在该反应中,二氢乳清酸(DHO)被氧化为乳清酸(OA),黄素单核苷酸(FMN)辅因子被还原,此反应由DHOD催化。人类的DHOD属于2类DHOD,实验表明其遵循逐步反应机制,但数据无法确定DHO逐步氧化过程中键断裂的顺序。本研究的目的是在分子水平上理解2类DHOD的反应机制,这可能有助于设计仅选择性影响该酶家族某些成员活性的抑制剂。本文采用量子力学/分子力学(QM/MM)混合方法和分子动力学(MD)模拟研究了人类DHOD中DHO氧化为OA的催化机制。计算得到的自由能垒表明,人类DHOD中的反应机制通过逐步反应途径发生。第一步,一个质子从DHO的C5转移到去质子化的Ser215侧链。而在第二步中,氢化物或等效氢化物从DHO的C6转移到FMN的N5,其中通过DFT/MM水平计算得到的自由能垒为10.84 kcal mol(-1)。最后,进行了残基分解分析,以阐明DHO氧化过程中催化区域残基的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验