Suppr超能文献

一种用于混合人群全基因组关联研究的广义序贯邦费罗尼程序,将混合映射信息纳入关联测试。

A Generalized Sequential Bonferroni Procedure for GWAS in Admixed Populations Incorporating Admixture Mapping Information into Association Tests.

作者信息

Chen Wenan, Ren Chunfeng, Qin Huaizhen, Archer Kellie J, Ouyang Weiwei, Liu Nianjun, Chen Xiangning, Luo Xingguang, Zhu Xiaofeng, Sun Shumei, Gao Guimin

机构信息

Department of Biostatistics, Virginia Commonwealth University, Richmond, Va., USA.

出版信息

Hum Hered. 2015;79(2):80-92. doi: 10.1159/000381474. Epub 2015 Jun 13.

Abstract

OBJECTIVE

To develop effective methods for GWAS in admixed populations such as African Americans.

METHODS

We show that, when testing the null hypothesis that the test SNP is not in background linkage disequilibrium with the causal variants, several existing methods cannot control well the family-wise error rate (FWER) in the strong sense in GWAS. These existing methods include association tests adjusting for global ancestry and joint association tests that combine statistics from admixture mapping tests and association tests that correct for local ancestry. Furthermore, we describe a generalized sequential Bonferroni (smooth-GSB) procedure for GWAS that incorporates smoothed weights calculated from admixture mapping tests into association tests that correct for local ancestry. We have applied the smooth-GSB procedure to analyses of GWAS data on American Africans from the Atherosclerosis Risk in Communities (ARIC) Study.

RESULTS

Our simulation studies indicate that the smooth-GSB procedure not only control the FWER, but also improves statistical power compared with association tests correcting for local ancestry.

CONCLUSION

The smooth-GSB procedure can result in a better performance than several existing methods for GWAS in admixed populations.

摘要

目的

开发适用于非洲裔美国人等混合人群全基因组关联研究(GWAS)的有效方法。

方法

我们发现,在检验测试单核苷酸多态性(SNP)与因果变异不存在背景连锁不平衡的原假设时,几种现有方法在GWAS中无法严格控制家族性错误率(FWER)。这些现有方法包括针对全球祖先进行调整的关联检验,以及将混合映射检验的统计量与针对本地祖先进行校正的关联检验相结合的联合关联检验。此外,我们描述了一种用于GWAS的广义序贯邦费罗尼(smooth-GSB)程序,该程序将从混合映射检验计算出的平滑权重纳入针对本地祖先进行校正的关联检验中。我们已将smooth-GSB程序应用于社区动脉粥样硬化风险(ARIC)研究中美国非洲人的GWAS数据分析。

结果

我们的模拟研究表明,与针对本地祖先进行校正的关联检验相比,smooth-GSB程序不仅能控制FWER,还能提高统计效能。

结论

对于混合人群的GWAS,smooth-GSB程序比几种现有方法性能更优。

相似文献

3
Joint ancestry and association testing in admixed individuals.混合人群中的共同祖先和关联测试。
PLoS Comput Biol. 2011 Dec;7(12):e1002325. doi: 10.1371/journal.pcbi.1002325. Epub 2011 Dec 22.
8
The Analysis of Ethnic Mixtures.种族混合分析
Methods Mol Biol. 2017;1666:505-525. doi: 10.1007/978-1-4939-7274-6_25.

引用本文的文献

1
Impact of cross-ancestry genetic architecture on GWASs in admixed populations.混合人群中跨血统遗传结构对 GWAS 的影响。
Am J Hum Genet. 2023 Jun 1;110(6):927-939. doi: 10.1016/j.ajhg.2023.05.001. Epub 2023 May 23.

本文引用的文献

3
Fast and accurate inference of local ancestry in Latino populations.快速准确推断拉丁裔人群的局部血统。
Bioinformatics. 2012 May 15;28(10):1359-67. doi: 10.1093/bioinformatics/bts144. Epub 2012 Apr 11.
6
HAPGEN2: simulation of multiple disease SNPs.HAPGEN2:模拟多种疾病 SNP。
Bioinformatics. 2011 Aug 15;27(16):2304-5. doi: 10.1093/bioinformatics/btr341. Epub 2011 Jun 8.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验