Suppr超能文献

基于局部上下文特征和加法支持向量机分类器的二尖瓣环铰链点识别

Identification of Mitral Annulus Hinge Point Based on Local Context Feature and Additive SVM Classifier.

作者信息

Zhang Jianming, Liu Yangchun, Xu Wei

机构信息

School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China.

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Comput Math Methods Med. 2015;2015:419826. doi: 10.1155/2015/419826. Epub 2015 May 18.

Abstract

The position of the hinge point of mitral annulus (MA) is important for segmentation, modeling and multimodalities registration of cardiac structures. The main difficulties in identifying the hinge point of MA are the inherent noisy, low resolution of echocardiography, and so on. This work aims to automatically detect the hinge point of MA by combining local context feature with additive support vector machines (SVM) classifier. The innovations are as follows: (1) designing a local context feature for MA in cardiac ultrasound image; (2) applying the additive kernel SVM classifier to identify the candidates of the hinge point of MA; (3) designing a weighted density field of candidates which represents the blocks of candidates; and (4) estimating an adaptive threshold on the weighted density field to get the position of the hinge point of MA and exclude the error from SVM classifier. The proposed algorithm is tested on echocardiographic four-chamber image sequence of 10 pediatric patients. Compared with the manual selected hinge points of MA which are selected by professional doctors, the mean error is in 0.96 ± 1.04 mm. Additive SVM classifier can fast and accurately identify the MA hinge point.

摘要

二尖瓣环(MA)铰链点的位置对于心脏结构的分割、建模及多模态配准很重要。识别MA铰链点的主要困难在于超声心动图固有的噪声、低分辨率等。这项工作旨在通过将局部上下文特征与加法支持向量机(SVM)分类器相结合来自动检测MA的铰链点。创新之处如下:(1)为心脏超声图像中的MA设计局部上下文特征;(2)应用加法核SVM分类器识别MA铰链点的候选点;(3)设计候选点的加权密度场以表示候选点块;(4)在加权密度场上估计自适应阈值以获取MA铰链点的位置并排除SVM分类器的误差。所提出的算法在10名儿科患者的超声心动图四腔图像序列上进行了测试。与专业医生手动选择的MA铰链点相比,平均误差为0.96±1.04毫米。加法SVM分类器能够快速准确地识别MA铰链点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8027/4450883/6b92ef011dcc/CMMM2015-419826.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验