Suppr超能文献

基于瓣膜状态预测器和约束光流的四维超声二尖瓣环分割。

Mitral annulus segmentation from four-dimensional ultrasound using a valve state predictor and constrained optical flow.

机构信息

Harvard School of Engineering and Applied Sciences, Cambridge, MA, USA.

出版信息

Med Image Anal. 2012 Feb;16(2):497-504. doi: 10.1016/j.media.2011.11.006. Epub 2011 Dec 4.

Abstract

Measurement of the shape and motion of the mitral valve annulus has proven useful in a number of applications, including pathology diagnosis and mitral valve modeling. Current methods to delineate the annulus from four-dimensional (4D) ultrasound, however, either require extensive overhead or user-interaction, become inaccurate as they accumulate tracking error, or they do not account for annular shape or motion. This paper presents a new 4D annulus segmentation method to account for these deficiencies. The method builds on a previously published three-dimensional (3D) annulus segmentation algorithm that accurately and robustly segments the mitral annulus in a frame with a closed valve. In the 4D method, a valve state predictor determines when the valve is closed. Subsequently, the 3D annulus segmentation algorithm finds the annulus in those frames. For frames with an open valve, a constrained optical flow algorithm is used to the track the annulus. The only inputs to the algorithm are the selection of one frame with a closed valve and one user-specified point near the valve, neither of which needs to be precise. The accuracy of the tracking method is shown by comparing the tracking results to manual segmentations made by a group of experts, where an average RMS difference of 1.67±0.63mm was found across 30 tracked frames.

摘要

测量二尖瓣瓣环的形状和运动已被证明在许多应用中非常有用,包括病理学诊断和二尖瓣建模。然而,目前从四维(4D)超声中描绘瓣环的方法要么需要大量的开销或用户交互,要么随着跟踪误差的积累而变得不准确,要么它们没有考虑到瓣环的形状或运动。本文提出了一种新的 4D 瓣环分割方法来弥补这些不足。该方法建立在之前发表的一种三维(3D)瓣环分割算法的基础上,该算法可以准确而稳健地分割在关闭瓣膜的帧中瓣环。在 4D 方法中,一个阀状态预测器确定阀何时关闭。随后,3D 瓣环分割算法在这些帧中找到瓣环。对于打开的瓣膜帧,使用约束光流算法来跟踪瓣环。该算法的唯一输入是选择一个关闭瓣膜的帧和一个靠近瓣膜的用户指定点,两者都不需要精确。通过将跟踪结果与一组专家手动分割进行比较,证明了跟踪方法的准确性,在 30 个跟踪帧中,平均 RMS 差异为 1.67±0.63mm。

相似文献

4
Mitral annulus segmentation from 3D ultrasound using graph cuts.基于图割的三维超声二尖瓣环分割。
IEEE Trans Med Imaging. 2010 Sep;29(9):1676-87. doi: 10.1109/TMI.2010.2050595. Epub 2010 Jun 17.
7
Patient-specific mitral leaflet segmentation from 4D ultrasound.基于4D超声的患者特异性二尖瓣叶分割
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):520-7. doi: 10.1007/978-3-642-23626-6_64.
8
Patient-specific mitral valve closure prediction using 3D echocardiography.基于 3D 超声心动图的二尖瓣个体化关闭预测。
Ultrasound Med Biol. 2013 May;39(5):769-83. doi: 10.1016/j.ultrasmedbio.2012.11.009. Epub 2013 Mar 13.

引用本文的文献

3
Extraction of open-state mitral valve geometry from CT volumes.从 CT 容积中提取二尖瓣开位几何形状。
Int J Comput Assist Radiol Surg. 2018 Nov;13(11):1741-1754. doi: 10.1007/s11548-018-1831-6. Epub 2018 Aug 3.

本文引用的文献

1
Mitral annulus segmentation from 3D ultrasound using graph cuts.基于图割的三维超声二尖瓣环分割。
IEEE Trans Med Imaging. 2010 Sep;29(9):1676-87. doi: 10.1109/TMI.2010.2050595. Epub 2010 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验