Luan Binquan, Huynh Tien, Zhou Ruhong
IBM T J Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598, USA.
J Chem Phys. 2015 Jun 21;142(23):234102. doi: 10.1063/1.4922618.
Engineered TiO2 nanoparticles have been routinely applied in nanotechnology, as well as in cosmetics and food industries. Despite active experimental studies intended to clarify TiO2's biological effects, including potential toxicity, the relation between experimentally inferred nanotoxicity and industry standards for safely applying nanoparticles remains somewhat ambiguous with justified concerns. Supplemental to experiments, molecular dynamics simulations have proven to be efficacious in investigating the molecular mechanism of a biological process occurring at nanoscale. In this article, to facilitate the nanotoxicity and nanomedicine research related to this important metal oxide, we provide a simplified force field, based on the original Matsui-Akaogi force field but compatible to the Lennard-Jones potentials normally used in modeling biomolecules, for simulating TiO2 nanoparticles interacting with biomolecules. The force field parameters were tested in simulating the bulk structure of TiO2, TiO2 nanoparticle-water interaction, as well as the adsorption of proteins on the TiO2 nanoparticle. We demonstrate that these simulation results are consistent with experimental data/observations. We expect that simulations will help to better understand the interaction between TiO2 and molecules.
工程化二氧化钛纳米颗粒已常规应用于纳米技术以及化妆品和食品工业。尽管有旨在阐明二氧化钛生物效应(包括潜在毒性)的积极实验研究,但实验推断的纳米毒性与安全应用纳米颗粒的行业标准之间的关系仍有些模糊,存在合理担忧。作为实验的补充,分子动力学模拟已被证明在研究纳米尺度上发生的生物过程的分子机制方面是有效的。在本文中,为了促进与这种重要金属氧化物相关的纳米毒性和纳米医学研究,我们基于原始的松井 - 赤荻力场提供了一个简化的力场,但与通常用于模拟生物分子的 Lennard - Jones 势兼容,用于模拟二氧化钛纳米颗粒与生物分子的相互作用。力场参数在模拟二氧化钛的体结构、二氧化钛纳米颗粒与水的相互作用以及蛋白质在二氧化钛纳米颗粒上的吸附方面进行了测试。我们证明这些模拟结果与实验数据/观察结果一致。我们期望模拟将有助于更好地理解二氧化钛与分子之间的相互作用。