Suppr超能文献

系统地寻找理论以指导系统评价:这可行吗?可取吗?

Systematic searching for theory to inform systematic reviews: is it feasible? Is it desirable?

作者信息

Booth Andrew, Carroll Christopher

机构信息

Health Economics & Decision Science (HEDS), School of Health & Related Research (ScHARR), University of Sheffield, Sheffield, UK.

出版信息

Health Info Libr J. 2015 Sep;32(3):220-35. doi: 10.1111/hir.12108. Epub 2015 Jun 11.

Abstract

BACKGROUND

In recognising the potential value of theory in understanding how interventions work comes a challenge - how to make identification of theory less haphazard?

OBJECTIVES

To explore the feasibility of systematic identification of theory.

METHOD

We searched PubMed for published reviews (1998-2012) that had explicitly sought to identify theory. Systematic searching may be characterised by a structured question, methodological filters and an itemised search procedure. We constructed a template (BeHEMoTh - Behaviour of interest; Health context; Exclusions; Models or Theories) for use when systematically identifying theory. The authors tested the template within two systematic reviews.

RESULTS

Of 34 systematic reviews, only 12 reviews (35%) reported a method for identifying theory. Nineteen did not specify how they identified studies containing theory. Data were unavailable for three reviews. Candidate terms include concept(s)/conceptual, framework(s), model(s), and theory/theories/theoretical. Information professionals must overcome inadequate reporting and the use of theory out of context. The review team faces an additional concern in lack of 'theory fidelity'.

CONCLUSIONS

Based on experience with two systematic reviews, the BeHEMoTh template and procedure offers a feasible and useful approach for identification of theory. Applications include realist synthesis, framework synthesis or review of complex interventions. The procedure requires rigorous evaluation.

摘要

背景

在认识到理论在理解干预措施如何发挥作用方面的潜在价值时,出现了一个挑战——如何使理论的识别不那么随意?

目的

探讨系统识别理论的可行性。

方法

我们在PubMed上搜索了1998年至2012年发表的明确试图识别理论的综述。系统搜索的特点可能包括结构化问题、方法学筛选和逐项搜索程序。我们构建了一个模板(BeHEMoTh——感兴趣的行为;健康背景;排除项;模型或理论),用于系统识别理论时使用。作者在两项系统综述中测试了该模板。

结果

在34项系统综述中,只有12项综述(35%)报告了识别理论的方法。19项未具体说明他们如何识别包含理论的研究。三项综述没有相关数据。候选术语包括概念/概念性、框架、模型以及理论/诸理论/理论性的。信息专业人员必须克服报告不足以及理论脱离背景使用的问题。综述团队还面临缺乏“理论保真度”的额外问题。

结论

基于两项系统综述的经验,BeHEMoTh模板和程序为理论识别提供了一种可行且有用的方法。应用包括现实主义综合、框架综合或复杂干预措施的综述。该程序需要严格评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验