He Xingfeng, Mo Yifei
Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.
Phys Chem Chem Phys. 2015 Jul 21;17(27):18035-44. doi: 10.1039/c5cp02181b. Epub 2015 Jun 22.
We perform a first principles computational study of designing the Na0.5Bi0.5TiO3 (NBT) perovskite material to increase its oxygen ionic conductivity. In agreement with the previous experiments, our computation results confirm fast oxygen ionic diffusion and good stability of the NBT material. The oxygen diffusion mechanisms in this new material were systematically investigated, and the effects of local atomistic configurations and dopants on oxygen diffusion were revealed. Novel doping strategies focusing on the Na/Bi sublattice were predicted and demonstrated by the first principles calculations. In particular, the K doped NBT compound achieved good phase stability and an order of magnitude increase in oxygen ionic conductivity of up to 0.1 S cm(-1) at 900 K compared to the previous Mg doped compositions. This study demonstrated the advantages of first principles calculations in understanding the fundamental structure-property relationship and in accelerating the materials design of the ionic conductor materials.
我们对设计钠铋钛矿材料(Na0.5Bi0.5TiO3,简称NBT)以提高其氧离子电导率进行了第一性原理计算研究。与先前的实验结果一致,我们的计算结果证实了NBT材料中氧离子的快速扩散以及良好的稳定性。我们系统地研究了这种新材料中的氧扩散机制,并揭示了局部原子构型和掺杂剂对氧扩散的影响。通过第一性原理计算预测并展示了聚焦于Na/Bi亚晶格的新型掺杂策略。特别是,与先前的镁掺杂组合物相比,钾掺杂的NBT化合物在900K时实现了良好的相稳定性,氧离子电导率提高了一个数量级,达到0.1S cm(-1)。这项研究展示了第一性原理计算在理解基本结构-性能关系以及加速离子导体材料的材料设计方面的优势。