Suppr超能文献

利用低能光学声子提高磷酸锰铁锂中的一维离子电导率。

Enhancing 1D ionic conductivity in lithium manganese iron phosphate with low-energy optical phonons.

作者信息

Oh Hyungju, Noh Chanwoo, Cho A Young, Kim Jong Chan, Kim Noma, Kim Kyoung Hoon

机构信息

Platform Technology Research Center, LG Chem, 30 Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea.

出版信息

Sci Rep. 2025 Aug 4;15(1):28421. doi: 10.1038/s41598-025-13769-8.

Abstract

Lithium manganese iron phosphate (LMFP) is a promising cathode material for lithium-ion batteries due to its enhanced safety and structural stability. However, its ionic conductivity is limited by the 1D channels within its olivine crystal structure. In this study, we investigate the influence of Mn/Fe atomic configurations on LMFP's ionic conductivity by integrating ab initio density-functional theory (DFT) calculations with molecular dynamics (MD) simulations using graph neural network-based interatomic potentials. Our results show that variations in the Mn/Fe environment around Li ions significantly affect the Li-ion migration barrier and transport mechanisms. Specifically, asymmetric Mn/Fe configurations break Li-site degeneracy and induce a low-energy optical (LEO) phonon mode below 50 cm, enhancing ionic conductivity. This study demonstrates that LMFP's ionic conductivity can be improved by more than 60% when this LEO phonon mode is present. These findings highlight the potential to optimize LMFP cathode performance by employing controlled synthesis methods that exploit favorable atomic configurations, laying the groundwork for accelerating the development of safer and more efficient lithium-ion batteries.

摘要

磷酸锂锰铁(LMFP)因其增强的安全性和结构稳定性,是一种很有前景的锂离子电池正极材料。然而,其离子电导率受橄榄石晶体结构内一维通道的限制。在本研究中,我们通过将基于图神经网络的原子间势的从头算密度泛函理论(DFT)计算与分子动力学(MD)模拟相结合,研究了Mn/Fe原子构型对LMFP离子电导率的影响。我们的结果表明,锂离子周围Mn/Fe环境的变化显著影响锂离子迁移势垒和传输机制。具体而言,不对称的Mn/Fe构型打破了锂位点简并,并在低于50cm处诱导出低能光学(LEO)声子模式,提高了离子电导率。本研究表明,当存在这种LEO声子模式时,LMFP的离子电导率可提高60%以上。这些发现凸显了通过采用利用有利原子构型的可控合成方法来优化LMFP正极性能的潜力,为加速开发更安全、更高效的锂离子电池奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81a0/12322197/deee37f9df2f/41598_2025_13769_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验