†Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland.
‡High Magnetic Field Laboratory, Chinese Academy of Science, Shushanhu Road 350, Hefei 230031, Anhui, P. R. China.
Nano Lett. 2015 Jul 8;15(7):4839-44. doi: 10.1021/acs.nanolett.5b02232. Epub 2015 Jun 22.
Using dynamic cantilever magnetometry we measure an enhanced skyrmion lattice phase extending from around 29 K down to at least 0.4 K in single MnSi nanowires (NWs). Although recent experiments on two-dimensional thin films show that reduced dimensionality stabilizes the skyrmion phase, our results are surprising given that the NW dimensions are much larger than the skyrmion lattice constant. Furthermore, the stability of the phase depends on the orientation of the NWs with respect to the applied magnetic field, suggesting that an effective magnetic anisotropy, likely due to the large surface-to-volume ratio of these nanostructures, is responsible for the stabilization. The compatibility of our technique with nanometer-scale samples paves the way for future studies on the effect of confinement and surfaces on magnetic skyrmions.
我们使用动态悬梁磁强计测量了 MnSi 纳米线中从 29 K 延伸到至少 0.4 K 的增强型斯格明子晶格相。尽管最近在二维薄膜上的实验表明,降低维度可以稳定斯格明子相,但考虑到 NW 的尺寸远远大于斯格明子晶格常数,我们的结果令人惊讶。此外,该相的稳定性取决于 NW 相对于外加磁场的方向,这表明一种有效的磁各向异性,可能是由于这些纳米结构的大表面积与体积比,导致了其稳定性。我们的技术与纳米级样品的兼容性为未来研究限制和表面对磁性斯格明子的影响铺平了道路。