Suppr超能文献

理解单核铱(III/IV)水合配合物对 IrO(x)·nH2O 催化的水分解体系光电化学的影响。

Understanding the Effect of Monomeric Iridium(III/IV) Aquo Complexes on the Photoelectrochemistry of IrO(x)·nH2O-Catalyzed Water-Splitting Systems.

机构信息

†School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

出版信息

J Am Chem Soc. 2015 Jul 15;137(27):8749-57. doi: 10.1021/jacs.5b03470. Epub 2015 Jul 6.

Abstract

Soluble, monomeric Ir(III/IV) complexes strongly affect the photoelectrochemical performance of IrO(x)·nH2O-catalyzed photoanodes for the oxygen evolution reaction (OER). The synthesis of IrO(x)·nH2O colloids by alkaline hydrolysis of Ir(III) or Ir(IV) salts proceeds through monomeric intermediates that were characterized using electrochemical and spectroscopic methods and modeled in TDDFT calculations. In air-saturated solutions, the monomers exist in a mixture of Ir(III) and Ir(IV) oxidation states, where the most likely formulations at pH 13 are Ir(OH)5(H2O) and Ir(OH)6, respectively. These monomeric anions strongly adsorb onto IrO(x)·nH2O colloids but can be removed by precipitation of the colloids with isopropanol. The monomeric anions strongly adsorb onto TiO2, and they promote the adsorption of ligand-free IrO(x)·nH2O colloids onto mesoporous titania photoanodes. However, the reversible adsorption/desorption of electroactive monomers effectively short-circuits the photoanode redox cycle and thus dramatically degrades the photoelectrochemical performance of the cell. The growth of a dense TiO2 barrier layer prevents access of soluble monomeric anions to the interface between the oxide semiconductor and the electrode back contact (a fluorinated tin oxide transparent conductor) and leads to improved photoanode performance. Purified IrO(x)·nH2O colloids, which contain no adsorbed monomer, give improved performance at the same electrodes. These results explain earlier observations that IrO(x)·nH2O catalysts can dramatically degrade the performance of metal oxide photoanodes for the OER reaction.

摘要

可溶性、单体 Ir(III/IV) 配合物强烈影响 IrO(x)·nH2O 催化的析氧反应 (OER) 光电阳极的光电化学性能。Ir(III) 或 Ir(IV) 盐的碱性水解合成 IrO(x)·nH2O 胶体,通过单体中间体进行,这些中间体使用电化学和光谱方法进行了表征,并在 TDDFT 计算中进行了建模。在空气饱和溶液中,单体存在于 Ir(III) 和 Ir(IV) 氧化态的混合物中,在 pH 13 下最可能的配方分别为 Ir(OH)5(H2O)Ir(OH)6。这些单体阴离子强烈吸附在 IrO(x)·nH2O 胶体上,但可以通过异丙醇沉淀胶体来去除。单体阴离子强烈吸附在 TiO2 上,并促进无配体的 IrO(x)·nH2O 胶体吸附在介孔 TiO2 光阳极上。然而,电活性单体的可逆吸附/解吸有效地短路了光阳极的氧化还原循环,从而极大地降低了电池的光电化学性能。致密 TiO2 阻挡层的生长阻止了可溶性单体阴离子进入氧化物半导体和电极背面接触(氟化锡透明导体)之间的界面,并导致光阳极性能得到改善。不含吸附单体的纯化 IrO(x)·nH2O 胶体在相同的电极上表现出更好的性能。这些结果解释了早先的观察结果,即 IrO(x)·nH2O 催化剂可以显著降低 OER 反应中金属氧化物光阳极的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验