Unciti-Broceta Juan D, Arias José L, Maceira José, Soriano Miguel, Ortiz-González Matilde, Hernández-Quero José, Muñóz-Torres Manuel, de Koning Harry P, Magez Stefan, Garcia-Salcedo José A
Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain; Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), PTS Granada, Armilla, Spain; Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), PTS Granada, Granada, Spain.
Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Granada, Granada, Spain.
PLoS Pathog. 2015 Jun 25;11(6):e1004942. doi: 10.1371/journal.ppat.1004942. eCollection 2015 Jun.
African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs.
非洲锥虫病是一种由细胞外寄生虫布氏锥虫引起的致命性被忽视疾病。目前的治疗方法具有药物毒性高和耐药性不断增加的特点,耐药性主要与参与药物摄取的转运蛋白功能丧失突变有关。将新的抗寄生虫药物引入治疗用途是一个缓慢且昂贵的过程。相比之下,对现有药物进行特异性靶向可能代表一种更快速且具成本效益的被忽视疾病治疗方法,通过降低全身毒性以及规避因化合物摄取受损而产生的耐药性来发挥作用。我们制备了负载杀锥虫药物喷他脒的壳聚糖纳米颗粒,并由特异性靶向非洲锥虫表面的单域纳米抗体包被。一旦装入这种纳米载体,喷他脒通过内吞作用进入锥虫,而不是通过经典的细胞表面转运蛋白。在急性非洲锥虫病小鼠模型中,负载喷他脒的纳米抗体 - 壳聚糖纳米颗粒的治愈剂量比单独使用喷他脒低100倍。至关重要的是,由于表面转运蛋白水甘油通道蛋白2发生突变,这种新制剂对耐喷他脒的锥虫细胞系在体外和体内均显示出不减的活性。我们得出结论,这种新的药物递送系统提高了药物疗效,并具有克服对某些抗寄生虫药物耐药性的能力。