Suppr超能文献

整合基于图像的表型组学与关联分析以剖析水稻对盐分时间响应的遗传结构

Integrating Image-Based Phenomics and Association Analysis to Dissect the Genetic Architecture of Temporal Salinity Responses in Rice.

作者信息

Campbell Malachy T, Knecht Avi C, Berger Bettina, Brien Chris J, Wang Dong, Walia Harkamal

机构信息

Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.).

Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)

出版信息

Plant Physiol. 2015 Aug;168(4):1476-89. doi: 10.1104/pp.15.00450. Epub 2015 Jun 25.

Abstract

Salinity affects a significant portion of arable land and is particularly detrimental for irrigated agriculture, which provides one-third of the global food supply. Rice (Oryza sativa), the most important food crop, is salt sensitive. The genetic resources for salt tolerance in rice germplasm exist but are underutilized due to the difficulty in capturing the dynamic nature of physiological responses to salt stress. The genetic basis of these physiological responses is predicted to be polygenic. In an effort to address this challenge, we generated temporal imaging data from 378 diverse rice genotypes across 14 d of 90 mm NaCl stress and developed a statistical model to assess the genetic architecture of dynamic salinity-induced growth responses in rice germplasm. A genomic region on chromosome 3 was strongly associated with the early growth response and was captured using visible range imaging. Fluorescence imaging identified four genomic regions linked to salinity-induced fluorescence responses. A region on chromosome 1 regulates both the fluorescence shift indicative of the longer term ionic stress and the early growth rate decline during salinity stress. We present, to our knowledge, a new approach to capture the dynamic plant responses to its environment and elucidate the genetic basis of these responses using a longitudinal genome-wide association model.

摘要

盐度影响着很大一部分耕地,对灌溉农业尤其有害,而灌溉农业提供了全球三分之一的粮食供应。水稻(Oryza sativa)是最重要的粮食作物,对盐敏感。水稻种质中存在耐盐的遗传资源,但由于难以捕捉对盐胁迫生理反应的动态特性,这些资源未得到充分利用。预计这些生理反应的遗传基础是多基因的。为应对这一挑战,我们在90毫米氯化钠胁迫下,对378种不同水稻基因型进行了为期14天的时间成像数据采集,并开发了一个统计模型,以评估水稻种质中动态盐度诱导生长反应的遗传结构。3号染色体上的一个基因组区域与早期生长反应密切相关,可通过可见光成像捕捉到。荧光成像确定了四个与盐度诱导荧光反应相关的基因组区域。1号染色体上的一个区域既调节指示长期离子胁迫的荧光变化,也调节盐胁迫期间早期生长速率的下降。据我们所知,我们提出了一种新方法,通过纵向全基因组关联模型来捕捉植物对其环境的动态反应,并阐明这些反应的遗传基础。

相似文献

3
Assessing Rice Salinity Tolerance: From Phenomics to Association Mapping.
Methods Mol Biol. 2021;2238:339-375. doi: 10.1007/978-1-0716-1068-8_23.
5
Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress.
Physiol Plant. 2015 Sep;155(1):43-54. doi: 10.1111/ppl.12356. Epub 2015 Jul 22.
8
Genome-wide association mapping of salinity tolerance in rice (Oryza sativa).
DNA Res. 2015 Apr;22(2):133-45. doi: 10.1093/dnares/dsu046. Epub 2015 Jan 27.
10
SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa).
Mol Genet Genomics. 2016 Dec;291(6):2081-2099. doi: 10.1007/s00438-016-1241-9. Epub 2016 Aug 17.

引用本文的文献

1
3
Omics-Driven Strategies for Developing Saline-Smart Lentils: A Comprehensive Review.
Int J Mol Sci. 2024 Oct 22;25(21):11360. doi: 10.3390/ijms252111360.
6
Crop/Plant Modeling Supports Plant Breeding: II. Guidance of Functional Plant Phenotyping for Trait Discovery.
Plant Phenomics. 2023 Sep 28;5:0091. doi: 10.34133/plantphenomics.0091. eCollection 2023.
8
Phenomics based prediction of plant biomass and leaf area in wheat using machine learning approaches.
Front Plant Sci. 2023 Jun 28;14:1214801. doi: 10.3389/fpls.2023.1214801. eCollection 2023.
10
A Strategy for the Acquisition and Analysis of Image-Based Phenome in Rice during the Whole Growth Period.
Plant Phenomics. 2023 Jun 8;5:0058. doi: 10.34133/plantphenomics.0058. eCollection 2023.

本文引用的文献

1
Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants.
Rice (N Y). 2012 Dec;5(1):11. doi: 10.1186/1939-8433-5-11. Epub 2012 Jun 22.
2
Genome-wide association mapping of growth dynamics detects time-specific and general quantitative trait loci.
J Exp Bot. 2015 Sep;66(18):5567-80. doi: 10.1093/jxb/erv176. Epub 2015 Apr 28.
3
Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis.
Plant Cell. 2014 Dec;26(12):4636-55. doi: 10.1105/tpc.114.129601. Epub 2014 Dec 11.
5
6
A Scalable Open-Source Pipeline for Large-Scale Root Phenotyping of Arabidopsis.
Plant Cell. 2014 Jun;26(6):2390-2403. doi: 10.1105/tpc.114.124032. Epub 2014 Jun 10.
7
Mapping dynamic QTL for plant height in triticale.
BMC Genet. 2014 May 19;15:59. doi: 10.1186/1471-2156-15-59.
8
High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines.
PLoS One. 2014 May 13;9(5):e97047. doi: 10.1371/journal.pone.0097047. eCollection 2014.
10
Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants.
Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6497-502. doi: 10.1073/pnas.1319955111. Epub 2014 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验