Marty Amber J, Broman Aimee T, Zarnowski Robert, Dwyer Teigan G, Bond Laura M, Lounes-Hadj Sahraoui Anissa, Fontaine Joël, Ntambi James M, Keleş Sündüz, Kendziorski Christina, Gauthier Gregory M
Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America.
Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America.
PLoS Pathog. 2015 Jun 26;11(6):e1004959. doi: 10.1371/journal.ppat.1004959. eCollection 2015 Jun.
In response to temperature, Blastomyces dermatitidis converts between yeast and mold forms. Knowledge of the mechanism(s) underlying this response to temperature remains limited. In B. dermatitidis, we identified a GATA transcription factor, SREB, important for the transition to mold. Null mutants (SREBΔ) fail to fully complete the conversion to mold and cannot properly regulate siderophore biosynthesis. To capture the transcriptional response regulated by SREB early in the phase transition (0-48 hours), gene expression microarrays were used to compare SREB∆ to an isogenic wild type isolate. Analysis of the time course microarray data demonstrated SREB functioned as a transcriptional regulator at 37°C and 22°C. Bioinformatic and biochemical analyses indicated SREB was involved in diverse biological processes including iron homeostasis, biosynthesis of triacylglycerol and ergosterol, and lipid droplet formation. Integration of microarray data, bioinformatics, and chromatin immunoprecipitation identified a subset of genes directly bound and regulated by SREB in vivo in yeast (37°C) and during the phase transition to mold (22°C). This included genes involved with siderophore biosynthesis and uptake, iron homeostasis, and genes unrelated to iron assimilation. Functional analysis suggested that lipid droplets were actively metabolized during the phase transition and lipid metabolism may contribute to filamentous growth at 22°C. Chromatin immunoprecipitation, RNA interference, and overexpression analyses suggested that SREB was in a negative regulatory circuit with the bZIP transcription factor encoded by HAPX. Both SREB and HAPX affected morphogenesis at 22°C; however, large changes in transcript abundance by gene deletion for SREB or strong overexpression for HAPX were required to alter the phase transition.
针对温度变化,皮炎芽生菌可在酵母形态和霉菌形态之间转换。关于这种对温度反应的潜在机制的了解仍然有限。在皮炎芽生菌中,我们鉴定出一种对向霉菌形态转变很重要的GATA转录因子SREB。缺失突变体(SREBΔ)无法完全完成向霉菌形态的转变,并且不能正常调节铁载体的生物合成。为了捕捉相变早期(0 - 48小时)由SREB调节的转录反应,使用基因表达微阵列将SREBΔ与同基因野生型分离株进行比较。对时间进程微阵列数据的分析表明,SREB在37°C和22°C时作为转录调节因子发挥作用。生物信息学和生化分析表明,SREB参与多种生物学过程,包括铁稳态、三酰甘油和麦角固醇的生物合成以及脂滴形成。微阵列数据、生物信息学和染色质免疫沉淀的整合确定了在酵母(37°C)和向霉菌形态转变(22°C)过程中,在体内直接由SREB结合和调节的一组基因。这包括与铁载体生物合成和摄取、铁稳态相关的基因,以及与铁同化无关的基因。功能分析表明,脂滴在相变过程中被积极代谢,脂质代谢可能有助于在22°C时的丝状生长。染色质免疫沉淀、RNA干扰和过表达分析表明,SREB与由HAPX编码的bZIP转录因子处于负调节回路中。SREB和HAPX在22°C时均影响形态发生;然而,需要通过删除SREB基因或强烈过表达HAPX来大幅改变转录本丰度,才能改变相变。